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A B S T R A C T   

Background: Chromium picolinate (CrPic) and vitamin D3 are known as two antioxidant micronutrients. Through 
inducing endothelial dysfunction, oxidants such as homocysteine (Hct) and malondialdehyde (MDA) lead to 
cardiovascular disease in type 2 diabetes mellitus (T2DM). No published data has directly examined the effects of 
these two antioxidants on improving the endothelial dysfunction in T2DM throughreducing homocysteine and 
oxidative stress. 
Methods: Subjects (n = 92) in this randomized, double blind, placebo-control study were randomly assigned to 
receive oral placebo (group I), D3 (group II: 50,000 IU/ week), chromium picolinate (CrPic) (group III: 500 μg/ 
day), and both vitamin D3 and CrPic (group IV) for four months. Fasting blood samples were drawn at study 
baseline and following intervention to determine Hct, MDA, total antioxidant capacity (TAC), total thiol groups 
(SHs), vascular cell adhesion molecule- 1 (VCAM-1), and plasminogen activator inhibitor-1 (PAI-1). 
Results: After intervention, MDA significantly decreased in groups II and IV; TAC significantly increased in group 
IV, and SHs significantly augmented in group III; Hct was significantly reduced in groups II, III, and IV; and 
VCAM-1 significantly decreased in groups III and IV and PAI-1 was significantly reduced in groups II, III, and IV. 
Conclusion: Our findings suggest that through reducing homocysteine and oxidative stress and improving 
endothelial dysfunction, chromium and vitamin D3 co-supplementation might be predictive and preventive of 
cardiovascular diseasesassociated with T2DM. 
IRCT, IRCT20190610043852N1, registered 21 October 2019, https://fa.irct.ir/user/trial/42293/view   

1. Introduction 

As the most serious manifestations of type 2 diabetes mellitus 
(T2DM), micor- and macrovascular complications such as atheroscle-
rosis, nephropathy, and retinopathy are associated with long-term 
damage and failure of various organs [1]. Atherosclerosis is one of the 

main causes of mortality in T2DM. Over the recent years, many studies 
have concentrated on pathogenic mechanisms and their therapeutic 
interventions [2–4]. 

Endothelial dysfunction has recently been under special investiga-
tion as the primary cause of biochemical processes which ultimately lead 
to atherosclerosis. Oxidative stress (OS) and hyperhomocysteinemia 
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have prominent roles in the pathogenesis of endothelial dysfunction 
[5–7]. 

Certain components of the antioxidant defense system, including 
superoxide enzymes, glutathione peroxidase and catalase, acid ureic, 
bilirubin, and molecules containing the thiol groups are generated inside 
the body. However, other components such as vitamins C and E and 
beta-carotene are produced through diet [8,9]. Studies have shown that 
vitamin D supplementation and chromium (Cr) significantly reduce OS 
parameters with different mechanisms [10–13]. 

Other studies have investigated the combined antioxidant effects of 
chromium with vitamins C and E along with elements such as zinc; 
nonetheless, there are no studies on the antioxidant effects of the co- 
administration of chromium picolinate (CrPic) and vitamin D [14,15]. 
Moreover, to the best of our knowledge, there is no research on the effect 
of chromium or joint chromium and vitamin D3 (D3) on homocysteine 
(Hct), vascular cell adhesion molecule- 1 (VCAM-1), and plasminogen 
activator inhibitor-1 (PAI-1) in T2MD. 

In the present study, we examined the effects of the co- 
administration of chromium picolinate (CrPic) and vitamin D on 
serum Hct, Malondialdehyde (MDA) as an indicator of lipid peroxida-
tion, total thiol groups (SHs) as innate antioxidants, total antioxidant 
capacity (TAC) as a marker of antioxidant status, and VCAM-1 and PAI-1 
as biomarkers of endothelial dysfunction. 

2. Material and methods 

2.1. Subjects 

This randomized placebo-controlled trialwas conducted on addi-
tional samples saved from our previous study with the Ethical approval 
code IR.ARAKMU.REC.1395.466 and IRCT 2017052034038N1, patient 
willingness, and new research proposal with new codes of ethics and 
IRCT. To better correlate our previous and current study data, extra 
serum (stored at -80 ◦C) was used instead of re-sampling to measure 
other biochemical factors of the new proposal. The population consisted 
of 92 patients diagnosed with T2DM at least 5 years before the research. 
They were randomly divided into four groups, namely placebo (I), 
vitamin D3 (II), CrPic (III), and both vitamin D3 and CrPic (IV). We 
calculated the sample-size for serum homocysteine concentration as a 
key variable according to Aghamohammadi: S1 = 3.1, S2 = 5.4, d = 4.2, 
α = 0.05 (type I error of 5%), β = 0.2 (type II error of 20%), power =
80%, and K = 4 [16]. A sample size of 19 individuals was reached for 
each group. However, considering the sample size of our previous study, 
23 individuals were considered for each group. 

Inclusion criteria were T2DM patients aged 35–70 years with the 
BMI (kg/m2) of less than 35. T2DM was identified as having a FBS 
concentration greater than or equal to 126 mg/dl and HbA1c greater 
than 6.5٪, which is mentioned in the American Diabetes Association 
guidelines. During the trial, the subjects were instructed not to change 
their diabetes drugs or diet. 

Exclusion criteria were (a) having congestive heart, renal and liver 
failure requiring pharmacological treatment, (b) being treated for in-
sulin, hyperthyroidism, immunosuppressive, immunomodulating, and 
corticosteroids agents, subjects taking antihypertensive and lipid- 
lowering drugs were allowed to participate provided that dosages 
were stable for 6 months before enrollment, (c) smokers, (d) lactating 
and pregnant women, and (e) consumption of dietary supplements and/ 
or weight-loss diets up to 6 months before enrollment in the study. 

2.2. Ethical and safety considerations 

This study was approved by the Ethics Committee on Human 
Research, Publication and Ethics at Arak University of Medical Sciences, 
Arak, Iran (IR.ARAKMU.REC.1398.131). Written informed consent was 
obtained regarding the use of the patients’ additional serum samples to 
measure the biomarkers in this study. The trial was registered at the 

Iranian website (www.irct.ir) under IRCT20190610043852N1. 

2.3. Study design and interventions 

Study design and interventions were reported in our previous study 
[17]. In summary, 

This study was conducted in the Diabetic Clinic of Imam Khomeini 
Hospital in Khomein, Iran, from August 2017 to January 2018. The 
study population consisted of 96 patients diagnosed with T2DM for at 
least five years before study entry, a stable dose of oral medications at 
least six months before screening, and without a significant change in 
their diet for more than six months before screening. They are randomly 
divided into four groups, including: (I) placebo of vitamin D3 at a dosage 
of one tablet/ week (n = 23), (II) vitamin D3 supplement at a dosage of 
50,000 IU/ week (n = 23), (III) CrPic supplement at a dosage of 500 μg/ 
day (n = 23), and (IV) both vitamin D3 at a dosage of 50,000 IU/ week 
and CrPic at a dosage of 500 μg/day (n = 23) for four months, 
respectively. 

2.4. Biochemical assessments 

Blood samples of all the subjects were drawn after an overnight fast 
at the beginning of the study and after four months of supplementation. 
Aliquot samples of serums were saved following centrifugation (20 min; 
3000 rpm) at − 80 ◦C. 

The serum levels of TAC, MDA, and total thiol groups were assayed 
using spectrophotometric method as previously described [18]. 

PAI-1 level was measured as an indicator of endothelial dysfunction 
by ELIZA kit (UK, abcam, ab108991). As another indicator of endothe-
lial dysfunction, VCAM-1 level was measured by ELIZA kit (UK, abcam, 
ab223591). 

Homocysteine levels were estimated by fully automated Chemi 
Luminescent Immune Assay method (model Immulite 2000 at the Lab-
oratory of Clinical Analysis of Razi, Arak, Iran). 

2.5. Statistical Analysis 

Statistical tests were performed using SPSS version 17 (SPSS, Chi-
cago, IL, USA). All data were expressed as means ± SD. The level of 
significance was set to P < 0.05. Normal distribution of the variables was 
examined by Kolmogorov-Smirnov Test. The groups were compared via 
the one-way ANOVA test, paired t-test, Wilcoxon signed-rank test, and 
Kruskal–Wallis one-way analysis of variance. 

3. Results 

This study was conducted on additional samples saved from our 
previous study conducted from August 2017 to January 2018. The pa-
tients’ anthropometric and lipid, glucose, insulin resistance, and in-
flammatory patterns had been measured and reported in our previous 
article before and after the intervention [17]. 

Following the intervention, homocysteine was significantly reduced 
in groups II, III, and IV, and group I was significantly different from 
groups II, III, and IV (Table 1). Intra- day and inter – day values of ho-
mocysteine were below 2.5% and 3.9%, respectively. Thus, giving us 
confidence about of the reproducibility of the method. Also, Bias% for 
homocysteine was 1% which giving us confidence about of the trueness 
of the method (Table 2). 

Regarding oxidative stress parameters, significant differences were 
observed in the mean of MDA before and after the intervention in all 
groups receiving the supplement. However, MDA did not significantly 
change in group I. There was no significant difference among the groups 
prior to the intervention whereas there was a significant difference be-
tween groups I and II and other groups and between groups III and IV 
(Table 1). Intra- day and inter – day values of MDA were below 5.3% and 
8.3%, respectively. Thus, giving us confidence about of the 
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reproducibility of the method. Also, Bias% for MDA was 3.2% which 
giving us confidence about of the trueness of the method (Table 2). 

SHs levels significantly decreased in group I, significantly augmented 
in group III, and nonsignificantly increased in groups II and IV. There 
was no significant difference among the groups before the intervention; 
however, groups I and II were significantly different from each other and 
other groups after the intervention (Table 1). Intra- day and inter – day 
values of SHs were below 4.7% and 6.9%, respectively. Thus, giving us 
confidence about of the reproducibility of the method. Also, Bias% for 
SHs was 2% which giving us confidence about of the trueness of the 
method (Table 2). 

Following the intervention, TAC significantly increased in group IV 
and was not significantly different in groups I, II, and III (Table 1). Intra- 
day and inter – day values of SHs were below 3.1% and 3.5%, respec-
tively. Thus, giving us confidence about of the reproducibility of the 
method. Also, Bias% for SHs was 3.33% which giving us confidence 
about of the trueness of the method (Table 2). 

VCAM-1 was significantly reduced in groups III and IV after the 
intervention, but it did not change significantly in groups I and II. 
Groups I and II were significantly different from groups III and IV 
following the intervention (Table3). 

After the intervention, PAI-1 decreased significantly in groups II, III, 
and IV, and there was a significant difference between all groups 
(Table3). 

4. Discussion 

In subjects with T2DM, one of the main causes of micro- and mac-
rovascular complications is vulnerability to oxidative damage [1]. 
Oxidative damage and hyperhomocystenemia induce endothelial 
dysfunction as the primary cause of biochemical processes ultimately 
leading to atherosclerosis. Studies have shown that in these individuals, 
oxidative stress and hyperhomocystenemia are induced due to the lower 
status of micronutrients such as trace elements and vitamins [19–21]. 
Deficiency in Cr and vitamin D has been introduced as an aggravating 
factor in the progression of T2DM [14,22,23]. 

In the current study,vitamin D significantly reduced homocysteine. 
The metabolism ofhomocysteine, as an independent cardiovascular risk 
factor, is done by remethylation to methionine (to help folate and 
vitamin B12) and the transsulfuration to cystathionine in the presence of 
vitamin B6 and cystathionine β-synthase (CβS) [24]. The mechanism 
through which vitamin D reduces serum homocysteine is yet to be 
elucidated. Kriebitzsch showed that vitamin D increased the expression 
of CβS in MC3T3-E1 cells [25]. Pham et al. 2016 reported that serum 
homocysteine concentrations were reduced by the improvement in 
vitamin D status [26]. Mao et al. (2016) observed vitamin D to be 
positively correlated with folic acid and B12 [27]. Amer et al. (2014) 
investigated people with a vitamin D concentration of 21 ng/mL or less. 
They found an inverse relationship between vitamin D concentration 
and homocysteine levels, but the mechanism has not been investigated 
[28]. 

Furthermore, in the current study, CrPic significantly reduced ho-
mocysteine. This is the first study to investigate the effects of chromium 
on homocysteine levels, but the exact mechanism of this relationship is 
still unknown. Due to the reducing effect of CrPic on oxidative stress in 
this study, one possible mechanism might be increased CBS activity due 

Table 1 
The subjects’ variables associated with the oxidative stress before and after the treatment in groups placebo, vitaminD3, chromium picolinate and vitaminD3 and 
chromium picolinate together.   

placebo (I) (n=23) vitaminD3 (II) (n=23) chromium picolinate (III) 
(n=23) 

vitaminD3 and chromium 
picolinate (IV) (n=23) 

Statistical 
significance  

before after before after before after before after  

MDA (μmol/L) 

3.4±1.0 3.7±0.19 3.7±0.70 3.25±0.62 3.5±0.78 2.9±0.63 3.6±0.90 2.9±0.4 I×II: < 0.005 

P< 0.193 P< 0.029* P< 0.01* P< 0.005* 

I×III: <0.05 
I×IV: <0.05 
II×III: <0.05 
II×IV: <0.05 
III×IV: NS 

SHs (mmol/L) 0.287± 0.133 0.241± 0.07 0.259± 0.053 0.359± 0.25 0.255 ± 0.09 0.299 ± 0.06 0.275 ± 0.047 0.320 ± 0.106 
I×II: <0.05 
I×III: <0.05 
I×IV: <0.05 

P< 0.01* P< 0.188 P< 0.028* P< 0.094 others NS 

TAC (μmol/L) 
962 ± 154 934 ± 156 914 ± 208 962 ± 162 883 ± 155 931 ± 168 837 ± 108 904 ± 83 

NS P< 0.447 P< 0.379 P< 0.166 P< 0.03* 

Hct (μmol/L) 
18.09±2.84 18.11±3.07 18.52±1.55 15.60±2.77 18.26±2.34 15.50±1.86 17.99±2.19 14.49±2.82 

I×II: < 0.000 
I×III: <0.000 
I×IV: <0.000 
II×III: NS 
II×IV: NS 
III×IV: NS 

P=.953 P=.000 P=.000 P=.000  

Malondialdehyde (MDA); Sulfhydryl groups (SHs); Total antioxidant capacity (TAC);Homocysteine (Hct). 
P- value: Differences in the percentage changes on mean value of initial reading between groups after the treatment and each group before and after the treatment (* 
significant, P < 0.05), Non- significant (NS). 

Table 2 
Assess the accuracy of the results Hct, MDA, TAC, and SHs.for intra-assay pre-
cision (Intra CV%) of 3 sample with low, middle and high-level of Hct, MDA, 
TAC, and SHs were tested for three replications in one day. Also, for inter-assay 
precision (Inter CV%) 3 sample with low, middle and high-level of Hct, MDA, 
TAC, and SHs were tested for 10 consecutive days.  

Assayed sample Bias%* concentration Intra CV% Inter CV% 

Hct 1 10.2 μmol/L 2.4 3.83   
15 μmol/L 1.8 3.8   
23.9 μmol/L 1.6 3.3 

MDA 3.2 1.7 μmol/L 5.2 8.2   
3.5 μmol/L 3.3 8   
5.9 μmol/L 3 6.7 

TAC 3.3 526 μmol/L 3 3.4   
883 μmol/L 2 2.7   
1267 μmol/L 3 1.5 

SHs 2 0.112 mmol/L 2.55 5.4   
0.46 mmol/L 4.6 6.8   
0.8 mmol/L 4.3 5.5 

Malondialdehyde (MDA); Sulfhydryl groups (SHs); Total antioxidant capacity 
(TAC);Homocysteine (Hct). ٭٭%Bias = [(test value – control value) / control 
value] * 100. 
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to oxidative stress reduced by CrPic. Niu et al. (2018) reported that the 
activity of reduced CBS was ~2- to 3-fold higher than that of the 
oxidized enzyme [29]. Finally, the combined use of CrPic and vitamin D 
supplementations significantly reduced homocysteine. The limitation of 
our study on the effects of vitamin D and chromium on homocysteine 
was that vitamin B12, B6, and folic acid levels were not measured. 
Future research is to examine the relationship between chromium and 
vitamin D both separately and together with folic acid, B12, and B6 
levels and their impact on the expression and activity of enzymes (such 
as CβS) involved in the homocysteine metabolism pathway. 

In this study, vitamin D significantly reduced MDA, but the increase 
in TAC and SHs was nonsignificant. Most studies have reported that oral 
vitamin D supplementation reduces MDA and TAC in T2DM [23,30–32]. 
However, findings are inconsistent and some studies have not revealed 
positive effects [33,34,13]. contradiction might be attributed to the 
differences in dose, route, and duration of vitamin D supplementation. 

Vitamin D is able to reduce OS through upregulating cellular gluta-
thione and antioxidant systems such as glutathione peroxidase and su-
peroxide dismutase [10]. 

Higher levels of systemic inflammation, glycoxidation, and lip-
oxidation biomarkers are the consequences of vitamin D deficiency [35]. 
Shab-Bidar et al. observed vitamin D receptor (BsmI) genotypes to in-
fluence inflammatory and oxidative stress responses with altered 
vitamin D intake in subjects with T2DM [35]. Vitamin D supplementa-
tion can ameliorate OS so as to improve insulin resistance and reduce 
blood pressure [35]. By reducing the activation of the pro-inflammatory 
transcription factor nuclear factor-κB, the vitamin D receptor plays an 
intrinsic inhibitory role in inflammation [35]. Oxidative stress and 
inflammation are closely related pathophysiological processes, with one 
easily induced by the other [36–38]. Accordingly, both processes are 
simultaneously found in many pathological conditions. We revealed that 
vitamin D reduced tumor necrosis factor-α (TNFα) and insulin resistance 
in T2DM [17]. 

In the current study, CrPic significantly reduced MDA and increased 
SHs, but the increase in TAC was nonsignificant. Lai found that Cr (1000 
μg as Cr yeast) reduced TAC in T2DM [39]. According to our results and 
the findings of other studies, chromium can be introduced as an antiox-
idant [17,40–42]. Cheng et al. observed that Cr reduced MDA while 
augmenting TAC in T2DM [41]. Uslu et al. showed that CrPic significantly 
reduced the MDA levels in the heart and liver tissues in T2DM rats [43]. 
The exact mechanism of chromium antioxidant activity is yet to be 
known. Given the role of insulin perturbations in the formation of lipid 
peroxidation products such as MDA, it can be concluded that a possible 
mechanism for the decreasing effect of chromium on MDA is the reduced 
serum insulin level or its improved action by chromium [14]. 

Furthermore, chromium reduces MDA via depressing the formation of 
trichloromethyl radicals (CCl3) from carbon tetrachloride (CCl4) as the 
inductor of lipid peroxidation and reducing the age-related accumulation 
of lipofuscin [14,44]. Tezuka et al. reported that Cr reduced the lipid 
peroxidation in mice through inhibiting CCl4 production [44]. 

Ultimately, the combined use of CrPic and vitamin D supplementa-
tions significantly reduced MDA and increased TAC, but the increase in 
SHs was nonsignificant. The nonsignificant changes in the SHs of group 
IV, TAC of group III, and TAC and SHs of group II might be ascribed to 
the relatively small number of subjects in each group (n = 23) which 
might cause subtle differences. More refined study designs with larger 
sample sizes are recommended. 

In the current research, vitamin D did not significantly reduce 
VCAM-1, but PAI-1 decreased in group (II). Campos et al. revealed that 
vitamin D improved endothelial dysfunction by reducing VCAM-1 and 
PAI-1 in obese adolescents [38]. Naeini et al. reported that vitamin D 
reduced the serum levels of VCAM-1 in end-stage renal disease patients 
[45]. Nevertheless, Talasaz et al. did not observed any significant dif-
ferences in the markers of endothelial function such as VCAM-1 in T2DM 
patients receiving vitamin D [46]. Given the decreasing effect of vitamin 
D on oxidative stress and TNF-α in these patients, and waiting for the 
activation of nuclear factor-κB transcription factor (NF-κB), this sup-
plement was expected to reduce VCAM-1 in the current study. No sig-
nificant reduction in the amount of VCAM-1 in this study might be due to 
the relatively small number of participants, hence the need for more 
refined study designs with larger sample sizes. 

PAI-1 is involved in fibrinolysis and thrombogenicity. Increased PAI- 
1 expression accelerates the development of thrombosis, atherosclerosis, 
and vascular injury. Mansouritorghabe et al. (2013) reported that the 
serum level of vitamin D had no effects on PAI-1 in diabetic patients 
[47]. Wu-Wong et al. (2007) showed that vitamin D receptor (VDR) had 
a reducing effect on the expression of PAI-1 in coronary artery and aortic 
smooth muscle cells [48]. However, Petrie et al. (2004) observed 
vitamin D to stimulate the expression of PAI-1 in human umbilical vein 
endothelial cells [49]. These inconsistent results are possibly due to the 
difference between VDR expression and its response to vitamin D in 
different cells. In their clinical trial, Amarasekera et al. (2017) found 
that vitamin D supplementation for 12 weeks did not influence PAI-1 in 
healthy volunteers with 25(OH)D levels <75 nmol/L [50]. However, the 
contradiction in the results of clinical trial studies may be due to the 
differences in dosage and duration of treatment. Another possible 
mechanism for the reduced expression of this molecule by vitamin D is 
the reduction in homocysteine by this vitamin. Studies have shown the 
positive effect of homocysteine on the expression of PAI-1 [51]. 

Finally, Alyami et al. surveyed the randomized control trial articles 

Table 3 
The subjects’ variables associated with endothelial dysfunction before and after the treatment in groups placebo, vitaminD3, chromium picolinate and vitaminD3 and 
chromium picolinate together.   

placebo (I) (n = 23) vitaminD3 (II) (n = 23) chromium picolinate (III) (n =
23) 

vitaminD3 and chromium 
picolinate (IV) (n = 23) Statistical significance 

before after before after before after before after 

VCAM-1 (μmol/L) 

1.38 ± 0.78 1.41 ± 0.78 1.307 ± 0.5 1.26 ± 0.59 2.92 ± 0.75 1.37 ± 0.53 2.71 ± 0.68 1.24 ± 0.46 
I × II: <NS 
I × III: <0.05 
I × IV: <0.05 

P < 0.808 P < 0.715 P < 0.0001* P < 0.0001* 
II × III: <0.05 
II × IV: <0.05 
III × IV: NS 

PAI -1 (μmol/L) 

15.21 ± 4.78 14.36 ± 2.7 14.97 ± 2.58 13.39 ± 2.94 17.79 ± 2.94 14.83 ± 2.39 17.45 ± 3.63 13.9 ± 1.59 
I × II: < 0.05 
I × III: <0.05 
I × IV: <0.05 

P < 0.616 P < 0.033* P < 0.004* P < 0.001* 
II × III: <0.05 
II × IV: <0.05 
III × IV: <0.05 

Vascular cell adhesion molecule 1 (VCAM-1); plasminogen activator inhibitor-1 (PAI-1). 
P- value: Differences in the percentage changes on mean value of initial reading between groups after the treatment and each group before and after the treatment (* 
significant, P < 0.05), Non- significant (NS). 
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(2009–2014) on the effects of vitamin D supplementation on endothelial 
function. They reported that RCTs articles did not confirm the beneficial 
effect of vitamin D on vascular reactivity [52]. Intervention studies with 
more detailed designs (duration, dose, sample size, control conditions of 
the patients during treatment and the use of double-blind and 
placebo-controlled crossover models) are required to more precisely 
specify the regulatory role of vitamin D in endothelial function. 

In this study, CrPic significantly reduced VCAM-1 and PAI-1 possibly 
because it reduced oxidative stress and TNF-α. VCAM-1 was expressed 
on the endothelial cells during inflammatory diseases via several me-
diators, including ROSs and TNF-α [53,54]. ROSs and TNF-α are 
involved in the activation of NF-κB [55], which induces the expression of 
VCAM-1 under inflammatory conditions. CrPic was shown to reduce 
ROSs and TNF-α in T2DM [17]. Therefore, CrPic might inhibit NF-κB 
through reducing inflammation and oxidative stress. Given the reduc-
tion of homocysteine in these subjects and the previous studies on the 
effect of homocysteine on NF-κB activation, a possible mechanism for 
the effect of this micronutrient on the expression of VCAM-1 and PAI-1 
seems to the reduced homocysteine and consequently the decreased 
activity of NF-κB [56]. A detailed survey on the molecular mechanism of 
the effects of chromium on VCAM-1 and PAI-1 expression is suggested in 
future studies. 

In the current research, combined use of CrPic and vitamin D 
significantly reduced VCAM-1 and PAI-1. It is proposed that the effects 
of these supplements on nitric oxide, antioxidant enzymes, and effective 
molecules in the expression of VCAM-1 and PAI-1 such as NF-κB be 
investigated to better fathom the exact mechanism of chromium and 
vitamin D. 

5. Conclusion 

In summary, these findings suggest that CrPic and vitamin D are 
effective in minimizing homocysteineand oxidative stress and 
improving the endothelial dysfunction in T2DM. Further research with 
more detailed design is recommended. 
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