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Abstract

The inability of other antioxidants to substitute for α-tocopherol in a number of cellular reactions, the lack of a compensatory antioxidant
response in the gene expression under conditions of α-tocopherol deficiency, the unique uptake of α-tocopherol relative to the other tocopherols
and its slower catabolism, and the striking differences in the molecular function of the different tocopherols and tocotrienols, observed in vitro,
unrelated to their antioxidant properties, are all data in support of a nonantioxidant molecular function of α-tocopherol. Furthermore, in vivo
studies have also shown that α-tocopherol is not able, at physiological concentrations, to protect against oxidant-induced damage or prevent
disease allegedly caused by oxidative damage. α-Tocopherol appears to act as a ligand of not yet identified specific proteins (receptors,
transcription factors) capable of regulating signal transduction and gene expression.
© 2007 Elsevier Inc. All rights reserved.
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Definition

α-Tocopherol has been defined as a radical-chain breaker
[1], which, due to its hydrophobic nature, operates in a lipid
environment. The effects of α-tocopherol as an antioxidant are
thus restricted to its direct effects in membranes and lipoprotein
domains. Consequently, other definitions such as “secondary
antioxidant,” antioxidant as inhibitor of “enzymes that produce
radicals,” or activator of “genes coding for antioxidant
enzymes” are confusing and do not help in understanding the
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molecular mechanism of α-tocopherol function in vivo. The
possible exclusion of α-tocopherol from the category of radical-
chain breaker in a hydrophobic environment as defined above
has prompted the reactive suggestion that the antioxidant
properties of α-tocopherol may be exerted within a micro-
domain of a receptor or of an enzyme. These types of
suggestions, however, go beyond the discussion of the
molecular aspects of α-tocopherol action.

The chemical paradigm

The antioxidant properties of α-tocopherol are a very well-
established chemical paradigm. Indeed, vitamin E can act as an
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antioxidant in the test tube, in lipid and phospholipid
suspensions [1], in cell-free Hevea brasiliensis latex [2], or
perhaps in plants, although in this case the alternative function
of cellular signaling by modulating jasmonic acid levels has
been also proposed [3]. There is little doubt that, in vivo, if
given in pharmacological concentrations, possibly by parenteral
administration to humans or animals, α-tocopherol must act as
an antioxidant; however, this situation goes obviously beyond
the concept of physiological function. Such an antioxidant
function, that is, intrinsic part of the chemistry of the molecule,
may in fact not be always desirable, similarly to the possible
negative effects of the administration of other antioxidants in
large amounts. It is known that the amount of the micro-
nutrients, such as polyphenols, provided with an antioxidant
function in vitro, which are accepted by the organism, is
extremely low [4] and certainly below the amount needed to
produce a significant antioxidant function. The emerging view
is that polyphenols are likely to exert beneficial and/or toxic
actions on cells not through their potential to act as antioxidants
but rather through their modulation of protein and lipid kinase
signaling cascades [5].

The unverified extension of the antioxidant concept from
chemistry into biology

The argument that chemically tested antioxidants must have
in vivo antioxidant properties is not tenable. Other in vitro
“antioxidants” as ubiquinone [6] and carotenoids [7] have in
vivo nonantioxidant properties. Also estrogens can be con-
sidered antioxidants [8], although not potent ones, and
physiological levels of 17,β-estradiol binding to LDL are
associated with enhanced resistance to their Cu2+-mediated
oxidation [9]; however, this effect is not the consequence of
radical scavenging; 17β-estradiol enhances the resistance of
LDL to oxidation by stabilizing apoB-100 conformation [10]. In
any case, 17β-estradiol, the most potent mammalian estrogenic
hormone, is not acting by virtue of its antioxidant properties, but
by binding to specific cellular receptors. Retinal [11],
polyphenols, phytoestrogens, and flavonoids [4,12] are other
examples of micronutrients provided with in vitro antioxidant
capacity; the concentration that they reach in vivo is of the order
of μM or lower that is not compatible with a significant in vivo
antioxidant function [13]. Rather, by directly modulating signal
transduction events they modify cell functional parameters [4].
An intriguing conjecture (there are not yet data to back it up) can
be made at this point that the concentration of plant polyphenols
provided with in vitro antioxidant properties is kept in the
human organism extremely low by limiting their absorption and
by induction of phase 1 and phase 2 enzymes, responsible for
their modification, conjugation, and efficient elimination [13–
15]. It appears in general as if diet antioxidant uptake must be
avoided and that antioxidant concentration must be kept very
low. The only exceptions appear to be ascorbic acid and α-
tocopherol. It may not be surprising that natural selection has
developed mechanisms intended to protect the organism from
excessive antioxidant intake since reactive oxygen species have
evolved as signaling molecules [16–21]. The activity of nox’s
(NADPH oxidases, present not only in macrophages but in a
large number of nonphagocyting cells) is tightly regulated by a
number of enzymes [19,22,23] and is aimed at controlled
production of superoxide and hydrogen peroxide. The latter is,
for instance, capable of inhibiting protein tyrosine phosphatases
with the consequent enhancement of the receptor tyrosine
kinase signal [24–27]. Interference with such oxygen signaling
by an antioxidant may not be desirable.

Nonantioxidant physiological function of α-tocopherol:
Evidence at a cellular level

K.C.D Hickman wrote in 1946: “The cutting down of cell
metabolism is a primary and intracellular function of vitamin E,
and … it has a secondary and more general antioxidant role
which may be taken by other substances” [28] as cited in [29].
This conclusion was reached on the basis of the differential
effects exhibited by vitamin E relative to methylene blue in
preventing oxygen toxicity in the rat.

Such a conclusion was, in subsequent years, ignored with
some exceptions such as A.T. Diplock who wrote in 1983 “The
results suggest that α-tocopherol is capable of exerting a
controlling influence upon the linoleyl and arachidonyl residues
within membrane phospholipids which cannot be explained on
the basis of the antioxidant function of the vitamin…” [30].

In more recent years the mechanism of action of α-
tocopherol has been thoroughly reinvestigated. In light of new
experimental findings, the view of Tappel [31] that the chain-
breaking antioxidant vitamin E is the main protector against in
vivo lipid peroxidation and of Burton and Ingold [32] that
vitamin E functions in living systems primarily as a lipid
antioxidant and free radical scavenger had to be revised. Among
the important discoveries that have brought to this new
paradigm is the finding that of the eight vitamin E family
members (α-, β-, γ-, δ-tocopherol and the homonymous
tocotrienols) only α-tocopherol (and to a much lesser extent
γ-tocopherol) appears to be retained in significant amounts [33]
by the organism. This event is the consequence of the
expression in the liver of a protein, α-TTP, with high selectively
for α-tocopherol [34,35] and low or very low affinity for the
other tocopherols with the implicit message of a particular
evolutionary pressure exerted by α-tocopherol, which is not
shared by other equally potent antioxidants. A second line of
evidence comes from the experimental observations that α-
tocopherol is able to modulate a number of cell functions in a
unique way, not shared by any other antioxidants [36,37]. Our
original observations were followed by a number of studies
[38–44] indicating that a number of cell functions, such as
inhibition of smooth muscle cell proliferation, preservation of
endothelial integrity, inhibition of monocyte-endothelial adhe-
sion, inhibition of monocyte reactive oxygen species and
cytokine release, and inhibition of platelet adhesion and
aggregation are controlled by the nonantioxidant properties of
α-tocopherol. It is hard to imagine that such a fine regulation of
cellular functions be mediated by noncontrollable free radical
chain reactions [45]. After our original finding that α-
tocopherol is able to modulate gene expression [46–50],
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many other genes have been found to be under the control of α-
tocopherol [51–56]. However, no genes expressing antioxidant
enzymes appear to be up regulated in the absence of α-
tocopherol as expected by an obvious compensatory mechan-
ism. The different tocopherols and tocotrienols have effects, at a
cellular level, that are independent of their relative antioxidant
properties; for instance, the different tocopherols and the
analogue compounds carbonitrile derivatives inhibit smooth
muscle cell proliferation by a mechanism not correlated with the
antioxidant properties of the molecules [57]. Moreover, the
competition between α-tocopherol and β-tocopherol in inhibit-
ing PKC or smooth muscle cell proliferation [58] suggests the
existence of a common binding site for the two molecules and
cannot be explained in terms of two antioxidants that, added
together, have less effect than α-tocopherol alone. α-Tocotrie-
nol has been also shown to act by the regulation of gene
expression in an antioxidant-independent way [59]. γ-Toco-
pherol, less potent than α tocopherol as an antioxidant [60,61],
has unique cellar functions, indicating again that their molecular
structures and not their antioxidant properties determine the
differential functions of tocopherols [62–72].

Nonantioxidant physiological function of α-tocopherol:
In vivo evidence

In a number of in vivo situations, no antioxidant effect of α-
tocopherol has been found. Only few of these observations, as
examples, will be cited here. No effect of supplementation with
vitamin E is seen on oxidative DNA damage as estimated by 8-
oxo-7,8-dihydro-2′-deoxyguanosine excretion [73], again indi-
cating that in vivo tocopherol did not act as an antioxidant. The
fact that also vitamin C and coenzyme Q have no effect on 8-
oxo-7,8-dihydro-2′-deoxyguanosine excretion [73] may raise a
question regarding generalized antioxidant properties of these
two molecules. Furthermore, antioxidants do not prevent
muscle oxidative damage in response to an ultramarathon run
[74]. Administration of vitamin E has been shown to trigger
preconditioning via K(ATP) channels and cyclic-GMP without
inhibiting lipid peroxidation [75]. Human atherosclerotic plaque
contains both oxidized lipids and relatively large amounts of α-
tocopherol and ascorbate, indicating that α-tocopherol is not
able to act in the plaque, as an antioxidant [76]. Furthermore,
human supplementation with α-tocopherol results in increased
plasma and LDL tocopherol levels but the degree of protection
against copper-catalyzed LDL oxidation is only evident at
doses>or=400 IU/day [73], thus indicating that, at physiolo-
gical concentrations, no antioxidant effect can be demonstrated.
α-Tocopherol does not have any protective effect against a
number of pathologies, at the basis of which is presumably an
excess of oxygen radical production such as on exercise-
induced increases in muscle damage or recovery [74] or in
carotid and aortic human lesions, where large amounts of
oxidized lipids coexist with relatively normal α-tocopherol
levels [76]. Also, recent mechanistic studies demonstrate that
the role of α-tocopherol during the early stages of lipoprotein
lipid peroxidation is complex and that the vitamin does not act
as a chain-breaking antioxidant [77]. The poor performance of
antioxidant strategies using α-tocopherol in preventing either
atherosclerosis or cardiovascular events is an established
problem [78]. Such a situation casts severe doubts either on
the implication of oxygen radicals as pathophysiological
important for the onset of atherosclerosis [79] or on the in
vivo efficacy of α-tocopherol as an antioxidant or on both [80].

If α-tocopherol is not acting as an antioxidant what
protects membrane phospholipid against oxidative
damage?

A number of compounds produced physiologically in the
body in a much regulated way have been shown to act in
protecting membranes against lipid oxidation. Among them,
bilirubin has been shown to be an antioxidant of physiological
importance [81] whose production is regulated by the oxidant-
inducible enzyme heme oxygenase.

Superoxide radicals can also reduce membrane damage by
acting as radical chain breakers [82] as well as nitric oxide,
which has been shown to react with lipid peroxyl radicals
exhibiting great oxidant protection [83]. Finally, phospholipid-
hydroperoxide glutathione peroxidase (GPx-4) is a well-
established mechanism for phospholipid hydroperoxide repair
[84].

A double role for α-tocopherol? Is DNA an antioxidant?

The fact that α-tocopherol plasma or tissue concentration
may be diminished under conditions of high radical production
(sepsis, smoking, etc) and its oxidation products may be
excreted has been taken as evidence that α-tocopherol acts as an
antioxidant. However, excretion of oxidized α-tocopherol
products does not to imply that α-tocopherol has finalistically
sacrificed itself to protect the organism against free radicals. In
fact, similarly to DNA, α-tocopherol requires protection by
other antioxidant systems to prevent its loss and with it, the loss
of its regulatory properties. When the oxidative mechanisms are
not compensated by sufficient protective mechanisms, burning
up of α-tocopherol may take place with the appearance of its
oxidation products; parallely, changes in the signaling effects of
the molecule may take place. It is well known that an excess of
free radicals can produce DNA single-strand and double-strand
breaks and the appearance in the urine of base oxidation
products such as 8-OH guanine. It is also known that this
damage can be repaired, with great efficiency, by appropriate
mechanisms. If the specific function of DNA and its hierarchal
superiority relative to all other cell functions were not known,
DNA could be considered a mechanism for free radical
scavenging, equipped with a capable recycling mechanism.

It appears that the relationship between α-tocopherol and its
oxidative environment is that of a sensor, monitoring the
environment and, through its concentration changes, transfer-
ring information to the cell. Recycling phenomena and TAP
(tocopherol-associated proteins) protection [85], as a conse-
quence of the tight interaction between protein and α-
tocopherol [86], may be mechanisms of preserving α-
tocopherol from oxidative damage and degradation. Given the
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specific functions of α-tocopherol, it is unthinkable to attribute
to α-tocopherol a co-primary role as antioxidant: if α-
tocopherol were an antioxidant, its concentration would
diminish as a consequence of an increased radical production
with abrogation of important physiological functions. As
discussed above, α-tocopherol must be protected against free
radical damage rather than be used to eliminate free radicals.
“Recycling” is therefore intended to regenerate damaged α-
tocopherol and not to reactivate a lost antioxidant.

Conclusion

A number of lines of evidence, evolutionary, genetic,
biochemical, and functional, have indicated that the natural
function of α-tocopherol is that of cell signaling. Such a
property is not shared by any other antioxidant molecule.
Recent experiments have indicated that α-tocopherol, but not
other antioxidants, is the precursor of a more active form of
vitamin E, α-tocopheryl phosphate; this species may be
ultimately the molecule which specifically interacts with a
receptor or transcription factor and modulates cell functions
[87,88]. α-Tocopherol has been shown as well not to protect in
vivo against oxidative damage or to prevent diseases which
have at their basis an oxidative insult. Altogether, the
conclusion can be drawn that α-tocopherol is not physiologi-
cally acting as an antioxidant.
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