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A B S T R A C T

Pterostilbene, a natural dimethylated analog of resveratrol, exerts pleiotropic anticancer effects against a variety
of cancer types. Due to the better lipophilic and oral absorption, higher cellular uptake and a longer half-life than
resveratrol, pterostilbene may have a good prospect in the future clinic application. In this review, we sum-
marize the previous in vitro and in vivo studies about the anticancer actions of pterostilbene on malignances, and
we also evaluate the evidence related to the effects of pterostilbene on blocking normal cell carcinogenesis.
Special focus is placed on the oncostatic effects of pterostilbene, including inhibition of tumor growth, metas-
tasis, angiogenesis and cancer stem cells, activation of apoptosis, and enhancement of immunotherapy. We then
clarify the emerging investigations about pterostilbene and chemotherapy and radiotherapy. Taken together, the
information complied herein may serve as a comprehensive reference for the anticancer mechanisms of pter-
ostilbene and may advance it as a future adjuvant therapeutic agent for cancer.

1. Introduction

Cancer is the second leading cause of death and remains a deadly
disease [1,2]. Chemoradiotherapy, one of the primary cancer therapies,
often leads to adverse side effects on normal cells or tissues, thus lim-
iting their application as an oncotherapy [3,4]. The poor prognosis and
worse overall survival of cancer spotlights the urgent need for novel
therapeutic strategies regarding the cancer prevention and treatment
[5]. This has spurred us to find new agents peculiarly from natural
materials with few undesirable side effects in cancer therapy. Pter-
ostilbene is a potential anticarcinogen lack of toxic and harmful side
effects and has attracted more attention [6,7].

Pterostilbene (3,5-dimethoxy-4′-hydroxystilbene) is a natural di-
methylated analog of the resveratrol (3,5,4′-trihydroxystilbene) found
mainly in blueberries and grapes [8,9]. Pterostilbene is similar to re-
sveratrol in pharmacology such as anticancer, hypolipidemic activity,
anti-diabetes and beneficial effects on the CNS and cardiovascular
diseases, which the mechanisms of are related to the effects of

antioxidant and anti-inflammation [8,10–13]; however, pterostilbene’s
antioxidant and anticancer effects are more potent [8]. Due to the
twomethoxy groups, pterostilbene exhibits better bioavailability,
leading to rise in oral and lipophilic absorption, and a longer half-life
than resveratrol [14,15]. Moreover, pterostilbene could prohibit the
growth of a lot of cancers: breast [16–20], lung [6,21–23], prostate
[24–27], melanoma [28–30], colon [31,32], etc (Table 1). The onco-
static mechanisms of pterostilbene correlate with several hallmarks of
cancer, including anti-proliferation [25,31,33,34], induction of apop-
tosis [6,32–36], inhibition of invasion and metastasis [17,24,30,37],
anti-angiogenesis [16,27,38], enhancement of immunotherapy [39,40]
and inhibition of cancer stem cell [22,41,42]. Consequently, these
findings confirm that pterostilbene is a potential anticarcinogen and
offer an incentive for further work in this field.

In this review, we systematically introduce the emerging anticancer
actions of pterostilbene. We first briefly discuss the anticarcinogenic
roles of pterostilbene against cancer. We then describe the anticancer
actions of pterostilbene in-depth. Subsequently, we depict the
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connection between pterostilbene and chemotherapy, radiotherapy re-
spectively. Ultimately, we extend our attention to several novel po-
tential directions and further perspectives in this research area.

2. Anti-inflammatory role of pterostilbene on carcinogenesis

2.1. In vitro studies

Inflammation is well-known causally correlated with carcinogen-
esis, due to acting as a driving force during the transformation of pre-
malignancy to malignancy [43–46]. The aberrant secretion and ex-
pression of inflammatory factors are critical for tumorigenesis [47,48].
Pterostilbene was found to significantly downregulate the cycloox-
ygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) levels
[32,49–54], which are involved in inflammatory process [49]. It was
found pterostilbene blocked the NF-κB signaling through inhibiting its
nuclear translocation, thus suppressing the pro-inflammatory cytokines
(e.g., TNFα, IL-1β, IL-6 and IL-18) expression, and inhibiting NO pro-
duction in vitro [49,51,55–58]. In addition, pterostilbene suppressed
the iNOS and COX-2 gene expression in LPS-stimulated macrophages
through repressing NF-κB activation by MAPK and PI3K/Akt cascades
depression [51,54].

2.2. In vivo studies

In female Balb/c mouse epidermis treated with tumor promoter 12-
O-tetradecanoylphorbol-13-acetate (TPA) [53], pterostilbene markedly
suppressed the NF-κB activity via inhibiting the p65 nucleus translo-
cation and preserving the IκBα cytosol retention. Additionally, pter-
ostilbene also inhibited the AP-1 activity via reducing the c-Jun binding
to TPA-responsive element (TRE) site [53]. Therefore, the reduced AP-1
and NF-κB transcription factors activation decreased the expression and
activity of COX-2 and iNOS [53]. Furthermore, pterostilbene sup-
pressed LPS-induced NF-κB translocation by repressing the MAPK
(ERK1/2 and p38) and PI3K/Akt pathway, subsequently down-
regulating the iNOS and COX-2 expression in TPA-treated mouse skin
[50] and in λ-carrageenan-induced rat paw edema model [54] (Fig. 1).

3. Antioxidative role of pterostilbene on carcinogenesis

3.1. In vitro studies

Continuous oxidative stress is now considered to be correlated with
neoplasm occurrence and tumor progression [59]. Oxidative stress can
cause DNA damage and gene mutations, resulting in carcinogenesis and
finally causing cancer [47] (Fig. 1); thus inhibition of oxidative stress is
a potentially important protective means to reduce carcinogenesis [60].

Harun et al. reported pterostilbene could significantly increase the
glutathione S-transferase (GST) activity and its thiol conjugate, glu-
tathione (GSH) level as well as NAD(P)H quinone oxidoreductase
(NQO1) activity in colon HT-29 cells [61]. Therefore, pterostilbene is
able to protect to the cells from the reactive species induced by injury
[61]. Studies have reported that pterostilbene increased the expression
and activity of superoxide dismutase 1 and 2 (SOD1 and SOD2) by
inhibiting miR-377, thus reducing oxidation in fructose-induced con-
ditionally immortalized mouse podocyte [62,63]. Furthermore, pter-
ostilbene effectively activated NF-E2-related factor 2/antioxidant re-
sponse element (Nrf2/ARE) via PI3K/Akt signaling, and subsequently
increased endogenous defense, scavenged UVB-induced ROS genera-
tion, and enhanced the ability of DNA recovery, thereby protecting
against UVB-related photo-injury in UVB-irradiated immortalized
human keratinocytes (HaCaT) cells [64]. It’s well known Nrf2/ARE
pathway is recognized as the central defense mechanism against oxi-
dative stress, regulating the expression of a battery of detoxifying/an-
tioxidant genes [64,65]. Kelch-like ECH-associated protein 1 (Keap1) is
a scaffolding protein for proteasome degradation and the repressor of
Nrf2 [64]. When disrupting from Keap1, Nrf2 rapidly undergoes nu-
clear translocation, and transactivates the ARE in the promoter region
of target genes (e.g., catalase, SOD, GPx, HO-1, NQO1, and γ-glutamate-
cysteine ligase) [64,66].

3.2. In vivo studies

Except above mentioned in vitro studies, suppressing miR-377 to
up-regulate SOD was confirmed in pterostilbene-treated fructose-fed
Sprague Dawley rats [62,63]. Interestingly, pterostilbene has been
found to effectively prevent ultraviolet B (UVB) (180mJ/cm2, 3 doses/
week for 6 months)-induced acute skin damage and carcinogenesis in
SKH-1 hairless mice [66]. Pterostilbene exerted the protective effect via
inhibiting Keap1 thus activating Nrf2/ARE pathway [66]. (Fig. 1).
Taken together, these evidences demonstrate that pterostilbene should
be regarded as a valuable drug for inhibition of carcinogenesis.

4. Effect of pterostilbene on cancer cell proliferation and cell cycle
arrest

4.1. In vitro studies

Arguably the most fundamental trait of cancer cells involves their
ability to sustain chronic proliferation [67]. Studies have revealed that
pterostilbene inhibited proliferation of a wide range of tumor cells,
including gastro [33], lung [23,68,69], lymphoma [34], colon [31],
prostate [25,68], breast [70,71] cancer cells. Since aberrant activity of
various cell cycle proteins results in uncontrolled cancer cell pro-
liferation, cell cycle regulators are regarded as attractive targets for
oncotherapy [72]. Pan and his colleagues suggested that pterostilbene
(80 μM)-treated human AGS gastric carcinoma cells were markedly
arrested at the G0/G1 phase [33]. Upon 80 μM pterostilbene treatment,
the degree of phosphorylation of Rb protein, mediated by the down-
regulation of cyclin A, cyclin E, CDK2, CDK4 and CDK6 levels, was
decreased [33]. However, the expression of p53, p21, p27, p16,
GADD45 and CHOP were significantly upregulated, thus maintaining
the cell cycle checkpoints and blocking abnormal mitosis [33]. Inter-
estingly, treatment of NSCLC A549 cells cultured in FBS-free medium
with lower pterostilbene (5 and 10 μM) concentration induced S-phase
arrest through activating the Ataxia Telangiectasia and Rad3-related
protein (ATR)/Ataxia telangiectasia mutated (ATM) kinase activity thus
subsequently phosphorylating checkpoint kinase 1/2 (CHK1/2),
leading to the activation of downstream effector molecules, including
p53, followed by activation of the replication stress response [69].
However, the level of p21 implicated in G1 arrest had no change [69].
Nevertheless, the mechanisms by which pterostilbene induces the G1
phase arrest at high doses (usually greater than 50 μM) [69] and S

Fig. 1. Effect of pterostilbene on the prevention of carcinogenesis. Pterostilbene
attenuates tissue damage, oxidative stress, inflammation, and DNA damage and
mutation. Therefore, pterostilbene inhibits normal cell carcinogenesis induced
by these factors. Abbreviations: COX-2, cyclooxygenase-2; IL-1β, interleukin-
1β; iNOS, inducible nitric oxide synthase; GSH, glutathione; GST, glutathione S-
transferase; NQO1, NAD(P)H quinone oxidoreductase; ROS, reactive oxygen
species; SOD1, superoxide dismutase 1; TNF-α, tumor necrosis factor-α.
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phase arrest at low concentrations remain unclear, thus warranting
further investigation. In addition, it has also been reported that pter-
ostilbene provoked S-phase arrest in large B-cell lymphoma cells
through significantly increasing the phospho-histone H2AX and CHK2
proteins expression and decreasing the CDC25A, CDK2 and cyclin A2
levels [34]. Moreover, pterostilbene also decreased the cyclin D1, β-
catenin and c-MYC expression in HT-29 colon cancer cells [31]. It was
demonstrated pterostilbene reduced miR-17, miR-21a and miR-106a/b,
and in turn repressed proliferation of prostate cancer DU145 and 22Rv1
cell lines by restoring PTEN expression through inhibiting the phos-
phorylation of Akt [25,68].

4.2. In vivo studies

Pterostilbene has been reported to suppress the urethane-caused
lung tumor growth in mice via decreasing the expression of EGFR and
resulting in a significant inhibition of Akt/mTOR and ERK1/2 pathway,
ultimately leading to disrupt the G1/S transition [23,68,73]. Moreover,
Paul et al. revealed that pterostilbene reduced a cell proliferation
marker, PCNA, and the β-catenin and cyclin D1 expression in the colon
adenocarcinomas in azoxymethane-injected male F344 rats [31]
(Fig. 2). In accordance with these studies, it is obvious that pter-
ostilbene could effectively inhibit cancer cell proliferation via a series of
signaling pathways.

Fig. 2. Proposed oncostatic actions of pter-
ostilbene on the hallmarks of cancer.
Abbreviations: Ago2, Argonaute 2; Akt, protein
kinase B; AP, activator protein; ATF4, acti-
vating transcription factor 4; ATM/ATR, Ataxia
telangiectasia mutated/ Ataxia Telangiectasia
and Rad3-related protein; Bad, bcl-Associated
Death Protein; Bak, bcl-2 homologous antago-
nist-killer protein; Bax, Bcl-2 associated X pro-
tein; Bcl-xl, bcl-X Protein; Bcl-2, B-cell lym-
phoma-2; Bid, BH3 interacting domain death
agonist protein; CDC25A, cell division cycle
protein A; CDK2, cyclin-dependent kinases 2;
CHK1/2, Checkpoint Kinase 1/2; CHOP, C/EBP
homologous protein; c-Met, mesenchymal-epi-
thelial transition factor; CREB, AMP response
element binding protein; CSC, cancer stem cell;
CXCL1, chemokine (C-X-C motif) ligand 1;
CXCR1, interleukin (IL)-8/C-X-C chemokine
receptor 1; Cyt-c, cytochrome c; DCR1/2, tumor
necrosis factor-related apoptosis-inducing li-
gand (TRAIL) receptors 3/4; DR4/5, tumor ne-
crosis factor-related apoptosis-inducing ligand
(TRAIL) receptors 1/2; EGF, epidermal growth
factor; EGFR, epidermal growth factor receptor;
EMT, epithelial-mesenchymal transition; ERK1/
2, extracellular signal regulated kinases 1/2; ER
stress, endoplasmic reticulum stress; Fas, factor
associated suicide; FasL, factor associated sui-
cide ligand; GRP78, glucose regulated protein
78; GSK-3β: glycogen synthase kinase-3; HGF,
hepatocyte-growth factor; HIF-1α, hypoxic re-
sponse transcription factor-1α; IL-1β, inter-
leukin-1β; MAPK, mitogen-activated protein
kinase; Mcl-1, myeloid cell leukemia-1; MMP-2,
matrix metalloprotein-2; MTA1, metastasis-as-
sociated protein 1; M2 TAM, M2-polarized
tumor-associated macrophage; mTOR, mam-
malian target of rapamycin; Muc1, mucin 1;
NF-κB, nuclear factor kappa B; PERK, PKR-like
ER kinase; PI3K, phosphoinositide 3 kinase;
PKC, protein kinase C; PTEN, phosphate and
tension homology deleted on chromsome ten;
SATB1, special AT-rich sequence-binding pro-
tein 1; Smac, second mitochondria-derived ac-
tivator of caspase; Sox2, sex-determining region
Y HMG-box 2; VCAM-1, vascular adhesion
molecule 1; VEGF, vascular endothelial growth
factor.
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5. Effect of pterostilbene on cancer cell apoptosis

Apoptosis, a well-known mechanism of programmed cell death, is
considered as a natural barrier during tumorigenesis and an important
therapeutic target [4,67,74]. Pterostilbene treatment could induce
apoptosis in numerous cancer cells, including bladder [10,75], lung
[6,76], breast [8,26,68,71,77–79], colon [32,80], gastro [33], pancreas
[81,82], oral cavity [83], esophageal [36], cervical [84], melanoma
[28], multiple myeloma [9], lymphoma [34,35]. Herein, we summar-
ized the mechanisms of pro-apoptotic effects exerted by pterostilbene in
vitro studies.

5.1. The intrinsic pathway

The Bcl-2 family of proteins are the most vital regulators involved in
the intrinsic pathway, which are key regulators of apoptosis [85]. It was
reported pterostilbene application significantly upregulated the ex-
pression of Bax [26,34,68,80], Bak [80], Bad [33,80] and Bid [33,80],
downregulated Bcl-2 [8,26,34,68,75], Bcl-xl [26,68,75] and Mcl-1
[26,68], and decreased mitochondrial membrane potential
[9,26,33,34,71,81,82]. Afterwards, the release of cytochrome c and
second mitochondrial derived activator of caspase (Smac/DIABLO)
from the intermembrane mitochondrial space into the cytosol was in-
creased [81]. Upon their release into the cytosol, Smac/DIABLO and
cytochrome c induced the activation caspase 9 and caspase 3, thus
leading to apoptosis [9,33,34,81,83].

5.2. The extrinsic pathway

The extrinsic pathway is triggered by factor-related suicide (Fas)
death receptor, subsequently, which activates downstream caspases and
ultimately results in apoptosis [85,86]. Pterostilbene increased the Fas
and FasL expression in the human T lymphoma HUT78 cells [10,35],
human AGS gastric cancer cells [10,33] and azoxymethane-treated
mice [32]. Moreover, pterostilbene could upregulate the expression of
TRAIL receptors 1 (DR4) and 2 (DR5), downregulate DcR-1 and DcR-2
expression [79] and activate caspase 3/7/8 [9,28,33,34,76,78,83], thus
enhancing the extrinsic apoptotic pathway in cancer cells.

5.3. The endoplasmic reticulum stress pathway

The endoplasmic reticulum (ER) is a vital cytosolic compartment for
proteins folding and modification, Ca2+ storage and lipids synthesis
[6,87,88]. Tumors are often challenged by hypoxia and nutrient de-
privation, which perturb the ER, thus leading to ER stress (ERS)
[6,87,89]. However, persistent ERS is able to break the balance towards
apoptosis and results in cell death [87]. Furthermore, previous studies
suggested that pterostilbene, a potent ERS activator [90], induced
apoptosis-related cell death via activating ERS in cancer cells
[6,36,79,84,90]. Ma et al. reported that the pterostilbene treatment
could promote ERS activation via increasing p-PERK, ATF4 and CHOP
levels, leading to the ER Ca2+ efflux into cytoplasm, thus enhancing
lung cancer PC9 and A549 cells apoptosis [6] (Fig. 2). Moreover,
pterostilbene induced ROS generation, activated ERK1/2 and p38, up-
regulated CHOP and then increased the DR4 and DR5 levels, ultimately
potentiated TRAIL-induced cell death in the triple negative breast
cancer cells with TRAIL-resistant [79]. Experimentally, pterostilbene
was proven to induce esophageal cancer EC109 and TE1 cells apoptosis
via rise of GRP78, p-PERK, ATF4, and CHOP expression [36]. Fur-
thermore, pterostilbene triggered ERS by redox homeostasis imbalance
and consequently led to apoptosis [84]. Thus, above evidence suggests
that pterostilbene can promote cancer cells apoptosis, making it be a
potential anticancer drug for cancer therapy.

6. Effect of pterostilbene on cancer invasion and metastasis

6.1. In vitro studies

About 90% tumor-associated deaths are correlated with metastatic
diseases instead of primary tumors [91,92]. Current evidence has de-
monstrated that pterostilbene suppressed cancer invasion and metas-
tasis [17–19,24,32,34,37,93–96]. Epithelial-mesenchymal transition
(EMT) is a well-known biological process that transforms the polarized
epithelial cell into the cell phenotype of mesenchymal [97,98]. There
are 3 types of EMT and the third EMT type functions in the tumor-
igenesis, related to tumor progression and metastasis [97]. Studies have
proposed stimulation of EMT was the crucial mechanism for the pro-
gression of carcinomas to a metastatic stage [97,99]. Furthermore,
studies have reported pterostilbene reversed the EMT [17,18]. Pter-
ostilbene inhibited EMT by the reduction of the mesenchymal protein
levels, such as vimentin and N-cadherin, and increase of junctional
protein E-cadherin via the inhibition of transcriptional factors (e.g.,
Snail, Slug, ZEB1 and Twist), in breast cancer MDA-MB-231 and MCF7
cells [17,18].

Matrix metalloproteinases (MMPs), which degrade the extracellular
matrix (ECM) and the basement membrane, are intensively correlated
with cancer invasion and metastasis [19,100]. Pterostilbene resulted in
reductions of MMP-2 and MMP-9 [19,32,34,37], which are most related
to cancer invasion and metastasis [37,101]. Moreover, pterostilbene
exhibited a potent anti-invasive and anti-metastatic action against 12-
O-tetradecanoylphorbol 13-acetate (TPA)-mediated metastasis of
human hepatocellular cancer cells via suppressing MMP-9 gene ex-
pression by PKC, EGF and VEGF downregulation, then blocking the
phosphorylation of MAPK and PI3K/AKT and inhibiting NF-κB and AP-
1 activity [37]. In human oral squamous cell carcinoma (SCC)-9 cells,
pterostilbene inhibited the activation of Akt, ERK1/2 and JNK1/2, and
then affected transcriptional inhibition of MMP-2 and urokinase-type
plasminogen activator (u-PA) through suppressing NF-kB, CREB and SP-
1 nuclear translocation and MMP-2 and u-PA promoter binding activ-
ities, thus resulting in migration/invasion capacities inhibition in SCC-9
cells [96]. Pterostilbene can repress the invadopodia formation and
maturation via the reduction of PDGFR-α, c-Src kinase, cortactin, and
tyrosine kinase substrate with five Src homology 3 domains (Tks5)
expression and inhibit the accumulation of membrane type 1-ma-
trixmetalloproteinase (MT1-MMP) and reduce the MMP-2/9 secretion,
leading to the inhibition of cell invasion and migration in breast cancer
MDA-MB-231 cells [19].

Pterostilbene treatment markedly phosphorylated Akt and subse-
quently downregulated ERK phosphorylation in suspended Lewis lung
cancer cells, then significantly reduced polymeric fibronectin (polyFN)
due to the repression of transportation of intracellular monoFN into the
extracellular plasma membrane of cancer cells and concomitant poly-
merization into polyFN [21]. Of note, it was reported that the c-Met
activation preferentially accelerated brain metastases in breast cancer
patients via promoting cancer cells adhesion to the brain endothelial
cells. Moreover, c-MET could stimulate the secretion of IL-1β and then
induce cancer-associated astrocytes to secrete the c-Met ligand HGF
[16]. However, pterostilbene suppressed the c-Met pathway by sig-
nificantly decreasing c-Met mRNA expression, thus inhibiting brain
metastasis [16] (Fig. 2). Additionally, pterostilbene inhibited the pro-
liferation of the highly malignant B16 melanoma. Pterostilbene treat-
ment could decrease the level of vascular adhesion molecule 1 in he-
patic sinusoidal endothelium, thus consequently reducing B16M-F10
cell adhesion to the endothelium [29,30].

6.2. In vivo studies

Inhibiting EMT of pterostilbene was further evaluated in vivo stu-
dies. Pterostilbene is able to inhibit EMT through downregulating the
vimentin, Src, Slug, Twist and ZEB1 expression in MDA-MB-231 cell
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tumor xenograft [17]. Nuclear metastasis-associated protein 1 (MTA1)
is a part of the nucleosome remodeling and deacetylase (NuRD) cor-
epressor complex that is correlated with gene silencing and histone
deacetylation [102]. Moreover, the overexpression of MTA1 was in-
volved in the progression of prostate cancer and promoted the EMT-
related tumor metastasis [24,93–95]. Interestingly, it was reported that
pterostilbene treatment could decrease multi-organ (prostate, lung,
liver and kidney) metastasis through inhibiting MTA1 in prostate
cancer [94]. Research has shown pterostilbene markedly mitigated
tumor growth and spontaneous metastasis by downregulating MTA1 in
prostate cancer DU145 xenograft mouse model [103]. Furthermore,
pterostilbene reduced MTA1 protein levels leading to increase of E-
cadherin and decrease of vimentin in prostate-specific Pten-loss mouse
models [24]. These studies collectively demonstrate that pterostilbene
has the potency to decrease the malignancy of tumor via repression of
tumor metastasis, providing new insights into possible therapeutic in-
terventions.

7. Effect of pterostilbene on cancer angiogenesis

7.1. In vitro studies

Tumor angiogenesis results from the enhancement of pro-angio-
genic factors such as VEGF and downregulation of anti-angiogenic
factors (e.g., angiostatin and endostatin) [104]. Coined in the late
eighties, the term “angiogenic switch” refers to a time-restricted event
during cancer progression where the balance between pro- and anti-
angiogenic factors tilts towards a pro-angiogenic outcome [105], which
is affected by pterostilbene [16,24,27,32,38]. Current evidence has
demonstrated that pterostilbene inhibited the production of VEGF
[28,32], the most important positive regulatory factor [47]. Butt and
his colleagues reported that cotreatment of pterostilbene with histone
deacetylase inhibitor vorinostat resulted in a significant decrease of
MTA1-associated proangiogenic factors (HIF-1α, VEGF, and IL-1β) in
prostate cancer cell lines [27]. Therefore, cotreatment with pter-
ostilbene with chemotherapeutics may have more effective actions but
less side-effects through targeting MTA1-associated angiogenesis [27].
Pterostilbene markedly repressed the growth of PDGF-activated vas-
cular smooth muscle cells through Akt inhibition [38]. Therefore, it
puts forward a new research direction that whether pterostilbene can
provoke the same effect in vessel of cancer. On the other hand, acti-
vation of c-Met strengthens angiogenesis via IL-8 and CXCL1 en-
hancement; however, pterostilbene exhibited stronger efficacy on in-
hibiting the c-Met expression and significantly inhibited the IL-1β, IL-8
and CXCL1 expression in human breast carcinoma 231BrM cell line
[16].

7.2. In vivo studies

Consistent with above-mentioned study, pterostilbene inhibited
AOM-induced β-catenin activation via repressing AOM-induced GSK-3β
phosphorylation, thus strongly decreased the level of VEGF in AOM-
treated male ICR mice [32]. It is noteworthy that pterostilbene treat-
ment results in the inhibition of hemangiogenesis, as confirmed by
decrease of CD31, VEGF-C and IL-1β due to MTA1 inhibition in the
prostate tissues of PTEN+/f prostate-specific heterozygous mice [24]
(Fig. 2). Considering the data discussed, it’s definite that pterostilbene
exerts inhibitory effects on angiogenesis. Nonetheless, researches in this
regard remain insufficient and the mechanism of pterostilbene in cancer
angiogenesis warrants further investigation.

8. Effect of pterostilbene on cancer stem cell

Cancer stem cells (CSCs) are a group of cancer cells with the ability
to self-renew and differentiation [41,106,107]. Additionally, CSCs are
considered to be intensively related to tumor metastasis, recurrence and

anticancer drug resistance [108,109]. There is solid evidence that
pterostilbene inhibited multiple CSCs, including breast CSCs
[18,20,41,68,110–112], glioma CSCs [42], and lung CSCs [22]. Pter-
ostilbene selectively repressed CD44+/CD24− CSCs in MCF-7 cells
[41,110]. Pterostilbene reduced the stem cell marker CD44 level in
breast CSCs and augmented β-catenin phosphorylation through de-
creasing expression of hedgehog protein and Akt and GSK-3β phos-
phorylation. Therefore, pterostilbene treatment reduced c-Myc and
cyclin D1 expression and then decreased the stemness activity [41,110].
In lung cancer A549 and H441cells, pterostilbene treatment decreased
the CD133+ lung cancer cell numbers in the presence of tumor-asso-
ciated macrophages (TAMs) through MUC1, NF-κB, β-catenin, Sox2,
and CD133 downregulation [22].

Study has suggested that pterostilbene treatment inhibited the
stemness of GSCs via downregulating the GRP78, c-Myc, β-catenin and
vimentin levels by the miR-205 upregulation in human glioblastoma
GBM8401 cell line [42]. Furthermore, pterostilbene activated the Ar-
gonaute2 (Ago2), a central RNA interference (RNAi) component, which
thereby represses breast cancer stem-like cell characteristics through
upregulating the tumor-suppressive miR-143, and miR-200c levels in
MDA-MB-231-luc-D3H2LN cells [20,68]. Intriguingly, pterostilbene
may reduce CSCs by suppressing EMT, given that activation of the EMT
program is able to confer upon carcinoma cells stem cell characteristics
[113–116]. It was identified pterostilbene impaired M2-tumor-asso-
ciated macrophage-induced proliferation and metastatic capacity of
breast CSCs through downregulating NF-κB expression and then upre-
gulating amount of an anti-metastatic miR488, which subsequently
decreased the expression of SATB1 and Twist1 in both M2 TAM-co-
cultured breast cancer cells [18,112] (Fig. 2). Hence, research should be
carried out to test the ratiocination.

9. Pterostilbene and immunotherapy

Immunotherapy has emerged as an important anticancer strategy in
recent years [117,118]. Enhancing anticancer immunity is regarded as
an effective means of repressing cancer progression [4,119]. The
human cathelicidin antimicrobial peptide (CAMP) gene, expressed by
both immune and epithelial cells, is an ideal candidate for killing a wide
range of bacteria and giving a practicable approach for strengthening
the innate immune response [39,120]. In experimental studies, pter-
ostilbene promoted the expression of CAMP protein in both myeloid
leukemia U937 cell and keratinocyte HaCaT cell [39]. Moreover, co-
treatment of pterostilbene with 1α,25(OH)2D3f further upregulated the
CAMP expression [39]. Therefore, it is the first time to demonstrate that
pterostilbene may enhance the innate immune ability via promoting
CAMP [39].

Of note, vascular abnormality may facilitate immune evasion
through abnormal immune responses [118,121]. It was put forward
that combining antiangiogenic strategies and immunotherapies might
upregulate the effectiveness of immunotherapy and attenuate the im-
mune-related side-effects, particularly antiangiogenic agents combined
with immune-checkpoint inhibitors [118,122]. Pembrolizumab and
ipilimumab, T-cell-associated checkpoint inhibitors, have been cur-
rently approved by European Medicines and Agency U.S. FDA [40,123].
Pembrolizumab and ipilimumab respectively inhibit the PD-1 pathway
and the cytotoxic T-lymphocyte-associated protein 4 (CTLA4), pre-
vailing in recent cancer therapies [40,123,124]. Therefore, it is
worthwhile to investigate the combinatorial effect of pterostilbene and
immune-checkpoint inhibitors, such as pembrolizumab and ipili-
mumab.

Snail was been recently reported to participate in the activation of
immunosuppressive cytokines and regulatory T cells [113,125]. The
generation of impaired dendritic cells, Snail-expressing cells and the
EMT process are also correlated with resistance to dendritic cell im-
munotherapy, acting on multiple immunosuppression and im-
munoresistance mechanisms [113,125]. Accordingly, pterostilbene may
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preserve immunocompetence in patients via EMT inhibition. Although
these conditions indicate that pterostilbene has an indirect anticancer
action on cancer cells through strengthening of anticancer immunity,
there still warrants further investigation.

10. Drug synergy of pterostilbene with chemotherapy

10.1. In vitro studies

As one of the dietary phytophenols, pterostilbene appears to be
extremely safe. It has favorable bioavailability and pharmacokinetic
profile as well as its pharmacological activities [126]. Cotreatment of
pterostilbene with chemotherapy could strengthen anticancer actions of
agents and decrease their side effects [77,80,127–129]. Current study
has suggested that pterostilbene promoted the sensitivity of colon
cancer cells to 5-fluorouracil and pterostilbene/5-fluorouracil co-
treatment exhibited a more powerful anticancer effect in colon cancer
Caco-2 cell line [128]. Intriguingly, treatment of prostate cancer cell
lines with pterostilbene and low dose vorinostat led to more powerful
repression of MTA1/HIF-1α cascades than by high dose vorinostat
alone, indicating the combinatorial strategy provoked higher efficacy
and less toxicity [27,130]. Equally importantly, two estrogen re-
ceptor–positive breast cancer MCF7 and ZR-75-1 cell lines had additive
reduction in cell viability with pterostilbene and tamoxifen cotreatment
in low does [77]. However, when pterostilbene combined with ar-
omatase inhibitor anastrozole, only ZR-75-1 cells showed additive cell
viability inhibition [77]. A recent study found that the addition of
pterostilbene to megestrol acetate led to a synergistic proliferative re-
pression in cancer cell through further attenuation of cell cycle and
survival pathways and inhibition of MAPK/ERK cascades in the en-
dometrial cancer HEC-1A cells [131].

Cotreatment of pterostilbene with plant-derived agents exhibits
more potent anticancer effects [28,41,110,127,132–134]. Pterostilbene
and 6-shogaol could upregulate the anticancer activity of paclitaxel in
MCF-7 breast cancer cells [41,110]. Moreover, when combined with
curcumin and its analogues, pterostilbene treatment exhibited sign-
ificant potential to alleviate LOX-mediated activity in E40 cells derived
from Hep 3B cell line [133]. It has also been documented that pter-
ostilbene plus (-)-epigallocatechin-3-gallate had additive anti-
proliferative effects and altered the apoptotic mechanisms in both
pancreatic cancer MIA PaCa-2 and PANC-1 cells [134]. Besides, co-
treatments of pterostilbene and inositol-6-phosphate, a complex car-
bohydrate, engendered a more profound level of proliferative sup-
pression and VEGF production in the human melanoma SK-MEL-2 cell
line [28]. Cotreatment of astragalus and pterostilbene engendered more
profound growth inhibition compared with either treatment alone in
the melanoma SK-MEL-2 cells [132].

The effects of several other chemotherapeutic drugs combined with
pterostilbene also have been explored [6,129,135]. Pterostilbene co-
treatment with THA significantly increased Bax, Caspase 3, p53, CHOP
and ROS level, and decreased Bcl2 protein compared with either
treatment alone in lung cancer PC9 and A549 cells [6]. In addition,
pterostilbene is able to enhance the anticancer effects of the EGFR in-
hibitor gefitinib and sertraline in glioblastoma multiforme cells
[129,135]. Cotreatment with either of these two compounds with
pterostilbene significantly suppressed cell proliferation and metastasis
via MAPK inhibition [129]. On the other hand, therapy-induced se-
nescence can be achieved at far lower chemotherapeutic doses than
those required to induce apoptosis, thus decreasing the side effects of
anticancer therapy [5,136]. Additionally, as cancer cells often evoke
resistance to apoptosis, pro-senescence therapy has recently emerged as
a novel method to treat cancers [5,137]. Emerging evidence suggests
that pterostilbene is a promising senescence-inducing drug on cancer
cells [5], thus enhancing anticancer activities and reducing adverse
actions of chemotherapy [5,138].

10.2. In vivo studies

Studies have shown pterostilbene sensitized tumor cells to vorino-
stat, a histone deacetylase inhibitor, leading to prostate cancer growth
repression in the Pten-null mouse [27]. Additionally, pterostilbene and
megestrol acetate cotreatment markedly inhibited the tumor growth in
the endometrial cancer HEC-1A xenograft mouse model [131]. Singh
et al. observed that a combined treatment of pterostilbene with lupeol
were more effective to decrease tumorigenesis, ROS generation in male
Swiss albino mice treated with benzopyrene [127]. Moreover, pter-
ostilbene co-treatment with THA significantly enhanced the regulation
of apoptosis-related proteins and upregulated CHOP level and ROS
generation compared with either treatment alone in PC9 xenografts
athymic nude mice [6]. The combination of pterostilbene+QUER+X-
rays+ FOLFOX6 regimen in HT-29 tumor-bearing mice was more ef-
fective and markedly promoted tumor regression [80]. These studies
collectively provide the basic results of the potential of pterostilbene
with chemotherapy for the cancer treatment. However, further studies
should focus more on clinical trials.

11. Pterostilbene and radiotherapy

11.1. In vitro studies

Despite the fact that radiotherapy is used to treat up to 50% of
cancer patients and to cure 40% of patients [139], many patients still
suffer from tumor recurrence and adverse-effects after radiotherapy
[140]. Therefore, to enhance the anticancer actions and to reduce the
side-effects of radiotherapy are essential [140]. Several solid cancer
CSCs were recently reported to particularly resist radiotherapy
[141–147]. As mentioned above, pterostilbene can inhibit multiple
CSCs through multiple signal pathways, thus leading to improvement of
radiotherapy. CD133-positive glioma stem cells usually lead to glioma
radio-resistance and cancer recurrence [42,143]. Interestingly, pter-
ostilbene could enhance the GBM cells sensitivity to 5 Gy γ-irradiation
in human glioblastoma GBM8401 cells [42]. Proverbially, it is re-
cognized that DNA damage and reactive free radicals lead to the
harmful effects of ionizing radiation [4,148]. Pterostilbene could de-
crease ROS generation and prohibit oxidative stress via upregulating
various antioxidants expression [149]. Equally importantly, pter-
ostilbene also could alleviate inflammatory response via inhibiting the
inflammatory factors [49]. Given that pterostilbene is well-recognized
antioxidant and anti-inflammatory [149], it is worthwhile to carry out
research to reveal the radioprotective role of pterostilbene.

11.2. In vivo studies

It was reported that GBM8401 cell tumor xenograft that received
the pterostilbene/irradiation (10 Gy once) cotreatment displayed the
smallest tumor volumes, when compared with the irradiation or pter-
ostilbene treatment alone group [42]. The result supported the hy-
pothesis that pterostilbene could enhance the efficiency of irradiation
[42]. Moreover, Sirerol et al. provided the evidence associated with
pterostilbene-exhibited protection against electromagnetic radiation by
UVB in SKH-1 hairless mice [66]. However, it still warrants further
basic studies to verify the roles of cotreatment between pterostilbene
application and radiotherapy before stepped into clinical trials.

12. Pterostilbene and clinical applicative research

Although pterostilbene possesses the anticancer effects on a variety
of neoplasms, its applications was still strictly restrained by the limited
solubility and stability [150]. Studies on blood pharmacokinetics of rats
showed that application of isoleucine prodrug with pterostilbene could
enhance its absorption and decrease its metabolism in the blood [151].
Experiments also found that the prodrug had prospective human
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intestinal absorption profiles in Caco-2 cells [151]. Moreover, it is well-
known that encapsulation of natural compounds into the nanocarriers
could enhance their bioavailability [49,152]. Additionally, the FDA has
already confirmed their safety application in human bodies [49]. Li-
posomal targeting strategy may allow the use of higher doses of drug
without side-effects; and targeted drug delivery may increase the drug
concentrations in neoplasms [153]. Zhang and his colleagues reported
the nanoemulsion delivery system developed by using low-energy
emulsification method markedly improved the pterostilbene’s stability
and solubility [150]. Pterostilbene solubility in water was dramatically
strengthened up to 2000 times by nanoemulsions through using iso-
propyl myristate, olive oil and flaxseed oil. Moreover, the bioavail-
ability of pterostilbene was almost up to 100% in 24 h at pH=3.6 with
isopropyl myristate emulsion and its metabolism was further inhibited
[49].

Neves et al. developed two novel resveratrol nanodelivery systems,
solid lipid nanoparticles (SLNs) and nanostructured lipid carriers
(NLCs). The two carriers were considered as suitable for oral adminis-
tration with a controlled release after uptake [154]. Given that pter-
ostilbene is the derivative of resveratrol, the study may provide refer-
ences for research of pterostilbene nanodelivery systems. Furthermore,
a variety of means of drug packing for delivery have been invented,
such as Gold nanoparticles (GNPs) [155], Poly(lactic-co-glycolic) acid
(PLGA) [156,157], magnetically responsive nanocarrier [158] and
exosomes [159]. These above strategies may be similarly exerted in the
future pterostilbene administration.

13. Discussion and conclusions

Despite the oncostatic actions of pterostilbene regarding the hall-
marks of cancers, more concerns should also be placed on the drug
safety. In a study done by RUIZ and his colleagues, mice were fed with
the doses of pterostilbene up to 3000mg/kg/day for 28 days, which are
equivalent to 500 times of the estimated mean human polyphenols
intake (25mg/day). Furthermore, it is noteworthy that mice had no
toxic effects or mortality [160]. Moreover, compared with control
groups, upregulated red blood cell number and the hematocrit were
observed in pterostilbene administrated groups, but there were no
significant changes in biochemical parameters and clinical signs [160].
It was concluded that pterostilbene is generally safe for human use, and
the doses could conduct up to 250mg/day in a clinical study [131,161].
In the light of the biological safety of pterostilbene and the results of its
oncology and animal experiments, more clinical trials should be carried
out to clarify the reasonable therapeutic dosages of pterostilbene and its
exact role in the effect of chemotherapy and radiotherapy as an ad-
juvant.

Pterostilbene is significantly more bioavailable than resveratrol [8],
due to the presence of twomethoxy groups [14,15]. At present, re-
sveratrol has been extensively studied and its basic research direction
and mechanism in tumor can provide reference for the research of
pterostilbene [8]. In recent studies, a pterostilbene derivative, pter-
ostilbene carboxaldehyde thiosemicarbazone (PTERC-T) has been syn-
thesized with improved activity than pterostilbene [54,162–166]. Ni-
khil et al. reported that PTERC-T application significantly reduced the
tumor volumes in Ehrlich ascitic cell xenograft [166]. In addition,
PTERC-T treatment promoted apoptosis via the caspases activation
through inhibiting Akt and ERK pathways in MCF-7 cells [166].
Moreover, a novel pterostilbene derivative, ANK-199, induced autop-
hagic cell death through enhancing the expression of LC-III and beclin1
in cisplatin-resistant CAR human oral cancer cells [167]. Additionally,
compared with pterostilbene, another analogue 3′-hydro-
xypterostilbene (HPSB) exerted more potent of anticancer actions on
inducing apoptosis and inhibiting proliferation in vitro [168]. The
study demonstrated that the bioactivity difference of HPSB compared
with pterostilbene was associated with the presence and position of
hydroxyl groups on the basic pterostilbene chemical structure [168]. In

summary, these results shed some light on the potential possibility of
discovering unique chemical modifications on pterostilbene to exert
stronger anti-cancer and anti-metastatic efficacies in the future.

In conclusion, pterostilbene may be a potent anticancer agent for
various cancer treatments. Furthermore, pterostilbene, through its ac-
tivities of anti-proliferation, pro-apoptosis, anti-invasion and metas-
tasis, anti-angiogenesis, and inhibition of cancer stem cell, should be
given more attention as a powerful oncostatic drug. Since pterostilbene
application potentiates the efficacy and decreases the adverse effects of
chemoradiotherapies and has the potential to augment the im-
munotherapy, and it could be used combined with conventional treat-
ments thereby enhancing their oncostatic effectiveness. Inasmuch as
pterostilbene has no toxic effects and poor solubility and stability,
further clinical trials which include pterostilbene and chemical mod-
ification or conjugation with nanoparticles that help pack and deliver
pterostilbene into tumor tissues will help to facilitate better applica-
tions of pterostilbene in the field of cancer therapy. Therefore, em-
ploying pterostilbene as a complementary and alternative medicine
may be a prevailing therapeutic strategy against cancer malignancy.
However, more clinical trials are required to validate the potential
anticancer activities of pterostilbene before its wide clinical use.
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