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Different breast cancer subtypes have
different metabolic phenotypes.

ERs modulate the expression of genes
important for metabolic regulation.

Extranuclear ERs regulate kinase sig-
naling pathways as well as mitochon-
drial metabolism to modulate cancer
cell metabolism.

Metabolic rewiring is an inherent prop-
erty of endocrine resistance, but it is
not clear whether it is a driver or con-
sequence of endocrine resistance.
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Estrogens and estrogen receptors (ERs) regulate metabolism in both normal
physiology and in disease. The metabolic characteristics of intrinsic breast
cancer subtypes change based on their ER expression. Crosstalk between
estrogen signaling elements and several key metabolic regulators alters metab-
olism in breast cancer cells, and enables tumors to rewire their metabolism to
adapt to poor perfusion, transient nutrient deprivation, and increased acidity.
This leads to the selection of drug-resistant and metastatic clones. In this
review we discuss studies revealing the role of estrogen signaling elements
in drug resistance development and metabolic adaptation during breast cancer
progression.

Estrogens and ERs regulate metabolism in both normal physiology and in disease. Despite lack
of sexual reproduction, invertebrates possess ER-like proteins that regulate their metabolic
processes, demonstrating the importance of ER signaling elements for non-reproductive
functions including metabolism [1]. Metabolic changes in postmenopausal women after estro-
gen loss suggest that estrogen signaling regulates energy metabolism [2]. Nutrient availability is
one of the important parameters for cell-cycle progression and proper energy metabolism.
Thus, cells constantly check the amount of nutrients in their microenvironment. Because
cancer cells proliferate in an uncontrolled way, they develop different strategies to keep their
proliferation rate stable even under limited nutrient conditions. This concept is called metabolic
plasticity. In 2011, Hanahan and Weinberg updated their milestone review to include metabolic
plasticity as an emerging cancer hallmark, called ‘deregulation of cellular energetics’ [3].
Tumors reprogram their metabolism to adapt to poor perfusion (lack of sufficient blood supply),
leading to transient nutrient deprivation and increased acidity. During adaptation to environ-
mental stress, drug-resistant and metastatic clones are selected [4,5]. In this review we focus
on the impact of estrogen signaling elements on metabolic alterations taking place during
breast cancer progression. We caution the readers that the majority of studies reported here
are fairly recent and still require rigorous validation, but they contribute to a comprehensive
framework that might explain some of the clinical observations regarding ER+ tumors.

Metabolic Differences between Breast Cancer Cell Subtypes
There are four intrinsic molecular subtypes of breast cancer: luminal A, luminal B, HER2+, and
triple-negative breast cancer (TNBC) [6]. Each tumor subtype has a distinct proliferation rate,
metastatic capacity, and metabolic phenotype and genotype (Boxes 1 and 2 and Table 1).
Transcriptomics combined with metabolomic analyses have identified altered metabolite levels
and associated metabolic pathways in different subtypes.

Glucose-Metabolizing Pathways
In a recent study, tumor samples across 33 different cancer types were analyzed and categorized
based on the mRNA expression of seven major metabolic pathways. Patients with tumors that
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Box 1. Molecular Subtypes of Breast Cancer

Breast cancer classification and patient stratification is crucial in terms of determining treatment strategy in clinic. Breast
tumors are classified into two groups: in situ (20% of all cases) and invasive breast tumors (80% of all cases). Based on
their location, in situ breast cancers are further classified into two groups: ductal carcinoma in situ (DCIS, �80% of in situ
breast cancers) and lobular carcinoma in situ (LCIS, �20% of in situ breast cancers). About 20–50% of DCIS tumors can
eventually progress to an invasive carcinoma [126]. Invasive breast cancers have the capacity to spread to other organs
in the body. Estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2)
expression is used in the clinic to determine breast cancer subtype. In addition, expression levels of Ki-67 are also
utilized to decide treatment options for patients. Based on expression of these biomarkers, invasive breast tumors are
divided into four main molecular subtypes of breast cancer: luminal A, luminal B, HER2-enriched, and triple-negative
(TNBC)/basal-like [127,128]. The luminal A subtype is hormone receptor-positive (HR+), HER2-negative (HER2�), and
has a low Ki-67 signature. It has relatively better prognosis and can be managed by endocrine therapies. The luminal B
subtype is also HR+ but it can be either HER2+ or HER2�, with higher Ki-67 expression and relatively worse prognosis
and less response to endocrine agents. The HER2-enriched subtype is HR� and HER2+, and has a worse prognosis
compared to the luminal subtypes. It is treated with HER2-targeting agents in the clinic. TNBC/basal-like subtype has no
hormone receptor or HER2 expression, and is more common in African-American women and in individuals with
BRCA1 mutation [128]. Overall, this is the most aggressive subtype and has limited targeted therapy options in the clinic.
Clinical studies showed that >75% of all breast cancers express ER and/or PR, and �10–15% also express HER2
[129].

Box 2. Metabolic Genes Mutated in Different Breast Cancer Subtypes

Mutation profiles of metabolic genes are different in different breast cancer subtypes. In general, TP53 and MYC
mutations are most commonly found in HER2+ and basal-like/TNBC subtypes [10,127], whereas 40–50% of luminal-
type tumors have mutations in PI3 K/AKT/mTOR pathway elements (e.g., PIK3CA, PIK3R1, PTEN, AKT1) [128].
PI3KCA and MAP3K1 are the most frequently mutated genes in this subtype [129]. On the other hand, glycolytic
enzymes (e.g., HK3, GPI, GAPDH, PGK1, ENO1), glycolysis regulator (PDK1), and pentose phosphate pathway
enzymes (PGD, TKT, RPIA) are the main metabolic genes with mutations in ER� breast cancers [130]. Lipid
metabolism-related genes (e.g., CPT-1A and FASN) are upregulated in the HER2+ subtype, whereas IDH1 [131]
and AKT3 mutations are the most common in the basal-like/TNBC [132] subtype.
have upregulated carbohydrate, nucleotide, and vitamin/cofactor metabolism had a worse
prognosis, while those with upregulated lipid metabolism had a better prognosis [7]. Additional
studies showed that ribulose 5-phosphate, fumarate, 2- hydroxyglutarate (2-HG), glutamate/
glutamine ratio, serine metabolites, kynurenine, monoacylglycerols (MAG), and most phospho-
lipid and sphingolipids are increased in the TNBC subtype versus the luminal subtype [8–10].
Consistent with these results, transporters involved in macronutrient uptake and metabolic
enzymes, such as GLUT1, SLC1A5, SLC7A5, GLS1, and PGDH, are upregulated in TNBC
[11–13]. Because preclinical studies suggest that TNBC relies more on the glucose metabolism,
this also creates a metabolic vulnerability that can potentially be targeted by metformin [14,15].
Similarly, pentose phosphate pathway intermediates, such as G6PDH and 6PGL, are also
upregulated in HER2+ and TNBC subtypes compared to luminal subtypes [16,17]. Another
recent study identified reduced tricarboxylic acid (TCA) cycle activity and oxidative phosphory-
lation (OXPHOS) via glycolysis pathways in luminal A invasive lobular carcinoma subtype of tumors
compared to the luminal A invasive ductal carcinoma subtype of tumors [18].

Amino Acid-Metabolizing Pathways
Amino acid metabolism is also different in different breast cancer subtypes (Table 1). MYC
amplification is the main regulator of glutamine-related metabolic rewiring. MYC facilitates
excess glutamine uptake by inducing the expression of glutamine transporters and glutamine-
metabolizing enzymes in breast cancers [19]. This molecular mechanism is upregulated in the
luminal B, TNBC, and HER2+ subtypes relative to luminal A subtypes [20]. Interestingly,
inhibition of ASCT2/SLC1A5-mediated transport with pharmacological inhibitors reduces
glutamine uptake only in TNBCs and not in luminal subtypes [21].
2 Trends in Endocrinology & Metabolism, Month Year, Vol. xx, No. yy
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Table 1. Molecular Differences in Different Breast Cancer Subtypes.

Breast cancer
subtypes and metabolic characteristics

Luminal A subtype Luminal B subtype HER2+ subtype Basal-like/TNBC

Glucose metabolism

G6PDH and 6PGL are
upregulated in HER2+

subtypes relative to
luminal subtypes [16,17]

Ribulose 5-phosphate,
fumarate, 2-HG, glutamate/
glutamine ratio, serine
metabolites, kynurenine, and
MAG are elevated in the
TNBC subtype relative to the
luminal subtype [7]
GLUT1, SLC1A5, SLC7A5,
GLS1, and PGDH are
upregulated in TNBC [11–13]
G6PDH and 6PGL are
upregulated in TNBC
subtypes
relative to the luminal
subtypes [16,17]

Amino acid metabolism

MYC is overexpressed in
luminal B versus luminal A
[19]

MYC is overexpressed in
HER2+ versus luminal A
[19]
MYC-related serine,
glycine, and tryptophan
uptake and the synthesis
of one-carbon units
result in a more active
TCA cycle in HER2+

tumor cells [8,21]

MYC is overexpressed in
luminal B, HER2+, and TNBC
relative to luminal A [19]
Inhibition of ASCT2/SLC1A5-
mediated glutamine uptake is
more effective in
TNBC than in luminal
subtypes [20]
MYC-related serine, glycine,
and tryptophan uptake and
synthesis of one-carbon
units result in a more active
TCA cycle in TNBC [8,21]
The enzymes responsible for
serine/glycine biosynthesis,
such as PGDH,
PSP. and SHMT, are
expressed at higher levels in
ER� subtypes than in ER+

subtypes [13,22]

Fatty acid metabolism

Inhibition of 27-
hydroxycholesterol synthesis
decreases cell proliferation in
ER+ cancers but not in ER�

cancers [27,28]a

Inhibition of 27-
hydroxycholesterol synthesis
decreases cell proliferation in
ER+ cancers but not in ER�

cancers [27,28]a

The expression of PLIN1,
CPT-A1, ACLY, SCD1,
and FASN is highest in
the HER2+ subtype
[24,25]
Phospholipid and
sphingolipid levels are
high in ER� breast
cancers [7,29,30]a

PLIN1, CPT-A1, ACLY, and
FASN expression is lowest in
the TNBC subtype [24,25].
Phospholipid and
sphingolipid levels are high in
ER� breast cancers
[7,29,30]a

Macronutrient metabolism

High vitamin B levels lowered
the risk of breast cancers in
all subtypes [23]
Folate has a protective effect

High vitamin B levels lowered
the risk of breast cancers in
all subtypes [23]
Folate has a protective effect

High vitamin B levels
lowered the risk of breast
cancers in all subtypes
[23]
Thiamine is protective

High vitamin B levels lowered
the risk of breast cancers in all
subtypes [23]
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Table 1. (continued)

Breast cancer
subtypes and metabolic characteristics

against ER+ PR+ HER2�

subtypes [23]a
against ER+ PR+ HER2�

subtypes [23]a
against HER2+ subtypes
[23]

Metabolic gene mutations

PIK3CA, PIK3R1, PTEN,
AKT1, MAP3K1 [128,129]

PIK3CA, PIK3R1, PTEN,
AKT1, MAP3K1 [128,129]

TP53, MYC [10,127]
HK3, GPI, GAPDH,
PGK1, ENO1, PDK1,
PGD, TKT, RPIA [130]
CPT-A1, FASN [26]

TP53, MYC [10,127]
HK3, GPI, GAPDH, PGK1,
ENO1, PDK1, PGD, TKT,
RPIA [130]
IDH1, AKT3 [131,132]

aER+ and PR+ are present in luminal A and luminal B subtypes, but not in HER2+ and TNBC subtypes.
MYC also upregulates serine, glycine, and tryptophan uptake and the synthesis of one-carbon
units, resulting in a more active TCA cycle in HER2+ and TNBC breast cancer subtypes [8,22].
Functional genomic studies revealed that the serine synthesis pathway is essential for breast
cancer cells, and the enzymes responsible for serine and glycine biosynthesis, such as PGDH,
PSP, and SHMT, are expressed in ER� breast cancers more than in ER+ [13,23]. Cancarini et
al. demonstrated the impact of one-carbon metabolism-associated vitamins in different breast
cancer subtypes. Overall, high vitamin B intake lowered breast cancer risk in all subtypes.
Notably, folate has a protective effect against ER+ PR+ and HER2� breast cancers whereas
thiamine is protective against HER2+ breast cancers [24].

Lipid-Metabolizing Pathways
Owing to high metabolic demand, lipid provision is essential for cancer cells. Because
lipid metabolism is directly related to intrinsic tumor biology and the tumor microenviron-
ment, genes associated with lipid metabolism are differentially expressed in different
subtypes. Kim et al. showed that, whereas HER2+ subtypes have the highest expression
levels of PLIN1, CPT-A1, and FASN, TNBC subtype tumors have the lowest expression of
these genes [25]. Similarly, ACLY, FASN, and SCD1 are overexpressed in the HER2+

subtype, whereas TNBC subtypes express less ACLY, suggesting that de novo
lipid synthesis is upregulated in the HER2+ subtype [26]. However, there are contradictory
studies suggesting that FASN overexpression is also a targetable therapy option for
TNBCs [27].

In addition to lipid metabolism-related enzymes, the levels of lipid metabolites also
differ depending on the subtype. Several groups reported that inhibition of 27-hydrox-
ycholesterol synthesis decreases the proliferation of ER+ breast cancers, but not of ER�

cancers [28,29]. Furthermore, several studies showed that various phospholipids
and sphingolipids are upregulated in ER� subtypes relative to ER+, and higher phospholipid
concentrations correlated with high tumor grade [30,31]. Overall, these studies
indicated that the TNBC and HER2+ subtypes adapt to a more active metabolic phenotype
compared to the luminal subtypes to sustain high metabolic demand during rapid cell
proliferation (Table 1).

Crosstalk between Macronutrient Metabolism and Estrogen Signaling
ERs regulate expression and activity of many enzymes involved in metabolic pathways
(Figure 1).
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Regulation of Glucose Metabolism
In cancer cells, key glucose transporters and glycolytic enzymes are upregulated to support the
synthesis of the building blocks required for cell proliferation, causing a metabolic shift towards
glycolysis, which is known as the ‘Warburg effect’ [32–34]. Hypoxia-dependent upregulation of
ER signaling stimulates the expression of glucose transporters (GLUT-1, GLUT-2, and GLUT-5)
in breast cancer cells [33]. MCF-7 cells switch their metabolic pathways in response to 17b-
estradiol (E2) and glucose availability. A high glucose level in the media activates AKT signaling
and suppresses the TCA cycle [35]. E2 treatment upregulates the c-Myc–hnRNP axis and the
expression and activity of glycolytic enzymes, such as PFKFB3, resulting in increased levels of
fructose 2,6-bisphosphate (F26BP) and glucose uptake [36,37]. In breast cancer cells, E2
regulates the balance between glycolysis and OXPHOS by upregulating PDH in the absence of
glucose [38]. E2 also promotes addiction to the pentose phosphate pathway by upregulating
G6PD enzyme in breast cancer cells [38]. Lactate production is also upregulated by E2 in breast
cancer cells [39]. Expression of HK and PFK also positively correlated with ER expression in
breast carcinomas, and inhibition of HK results in high toxicity in breast cancer cells [40–42]. In
addition to the two classic ERs, GPER-1 (the membrane G protein-coupled ER) has been
shown to control estrogen-mediated angiogenesis by upregulating PFKFB3 [43].

Regulation of Amino Acid Metabolism
Glutamine is the most abundant amino acid in the serum and is preferentially consumed by breast
tumors in an ER-dependent manner [11,44]. Although a limited number of studies have demon-
strated crosstalk between estrogen signaling and amino acid metabolism, clinical studies showed
that ER+ tumors were glutamine-enriched and glutamate-reduced relative to ER� breast tumors
[11,12,45]. Specifically, the enzymes responsible for glutamine synthesis (GS, GDH) are upregu-
lated in ER+ breast cancer cells relative to ER� cells [46,47]. Conversely, glutamine uptake and
enzymes related to glutamine catabolism (GLS) were shown to be upregulated in ER� breast
tumors [48]. Accordingly, glutaminase inhibitor treatment was reported to have a better antitumor
effects on ER� breast cancer cells [49]. In addition to glutamine, dietary arginine supplementation
and upregulated ASL levels are associated with a high cell proliferation rate in breast tumors, and
inhibition of ASL activity was shown to inhibit ER� breast cancer growth [50]. Asparagine is
directed to the TCA cycle during adaptation to glutamine depletion in metastatic ER� murine
breast cancer cells [51,52]. Leucine deprivation inhibits cell proliferation and induces apoptosis in
ER+ breast cancers by decreasing FASN expression [53]. These results suggest that there is
complex crosstalk between estrogen signaling and amino acid synthesis pathways.

Regulation of Lipid Metabolism
Clinical observations showed that higher levels of E2 lead to decreased fat accumulation, whereas
ovariectomy, antiestrogen therapy, and menopause have the inverse effect in females [54]. Both
E2 treatment and ERa/ERb overexpression suppress lipogenesis and triglyceride accumulation
via competitive binding to PPARg in adipose tissue and various hormone-related cancers [55–57].
These effects are due to upregulation of leptin (LEP) and STAT3 genes in the liver, and of XBP in
endocrine-related cancers [58–60]. In addition, estradiol downregulates the expression of CD36,
a transporter for free fatty acids, in breast cancer cells [61]. FASN and ACC-1 are overexpressed in
breast cancer cells compared to normal cells, and their inhibition was proposed as a potential
therapy in breast cancers [62,63]. Inhibition of SCD-1 was also shown to inhibit breast tumor
growth [64]. In addition to changes in lipid metabolism pathways, specific free fatty acids were
shown to impact on the energy status and cell viability of breast cancer cells. Anacardic acid, but
not oleic acid or salicylic acid, inhibited cell viability in ER+cells by reducing cellular respiration [65].
Lastly, the biosynthesis of choline, which is a vitamin-like essential nutrient and an important
element in the plasma membrane, was found to be regulated by ERa [66].
Trends in Endocrinology & Metabolism, Month Year, Vol. xx, No. yy 5



TEM 1361 No. of Pages 14
The effects of estrogen signaling on lipid metabolism are not unidirectional. Inhibition of FASN
suppresses E2-stimulated cell growth and survival in breast cancer cells via activation of
apoptotic pathways and inactivation of the oncogenic PI3K/AKT pathway [67]. Many groups
have shown that 27-hydroxycholesterol can act as a ligand for ER and promote cell proliferation
via ER signaling in breast cancers [28,29]. In conclusion, there is bidirectional signaling between
estrogen signaling and lipid metabolism. More studies will be necessary to elucidate the
molecular mechanism underlying this crosstalk.

Crosstalk between Metabolic Regulators and Estrogen Signaling
ERs play a center role in metabolic regulation through cross-talk with various key regulators in
the cell (Figure 2).

ER–Hypoxia-Inducible Factor (HIF) Crosstalk
HIF is a central regulator of oxygen homeostasis in the cell. As the tumor grows the tumor core
becomes hypoxic owing to the diffusion limit of oxygen. This lack of oxygen activates a transcrip-
tional complex involving HIF-1a, thus deregulating numerous genes that are crucial for metabolic
adaptation, angiogenesis, and eventually metastasis [68]. High HIF-1a expression in tumors is
associated with poor disease outcome and higher mortality in breast cancer patients [69].
Recently, HIF-1a was shown to be a transcriptional target of ERa and high HIF-1a expression
was associated with tamoxifen resistance in ERa+ tumors [70]. By contrast, the hypoxia response
reduces ERa expression and cell proliferation [71]. Other studies showed that HIF-1a and ERa
transcriptionally regulate a common group of genes [72]. In addition to ERa, GPER-1, which
mediates the non-genomic effects of estrogens, promotes HIF-dependent transcription and
stimulates glycolysis in endocrine-regulated cells [72,73]. This well-established crosstalk enables
new therapeutic approaches to treat hypoxic ER+ breast cancers [71,74].

ER–Ras/Raf/MAPK Crosstalk
The Ras/Raf/MAPK pathway is one of the best-studied signal transduction pathways in the cell,
and it acts as a highway for the intercommunication of the intracellular and extracellular environ-
ments. The oncogenic role of the Ras/Raf/MAPK pathway is very well studied in breast cancers;
however, the role of ERa in this pathway remains elusive. Studies comparing the expression levels
of the members of Ras/Raf/MAPK pathway in different breast cancer subtypes reported that
patient samples with overexpression of Ras and MAPK proteins are more invasive and have lower
ERa expression [75]. Consistent with these data, most transgenic in vivo models overexpressing
Ras develop ER� breast tumors. Andoet al. recently developed an in vivo breast cancer mouse
model expressing a constitutively active KRAS in mammary tissue. This model developed ER+

adenocarcinomas with luminal A subtype breast cancer characteristics [76]. FASN activation by
mutant KRAS was shown in lung cancer, and similar effects of Ras/MAPK pathway activation in
ER+ breast cancer remain to be explored [77].

ER–PI3K/AKT/mTOR Crosstalk
The PI3K/AKT/mTOR pathway is a key regulator of all cellular characteristics which are
essential for the vitality of a cell, such as proliferation, metabolism, motility, survival, and
apoptosis. Components of PI3K/AKT/mTOR pathway, including PIK3CA, PTEN, PIK3R1,
and AKT1, are mutated in nearly 25% of breast tumors and are associated with drug responses
in ER+ and ER� tumors [78–80]. Estrogens stimulate this pathway to regulate the migratory and
invasive characteristics of ER+ tumors [81,82]. In return, mTOR signaling regulates the expres-
sion level and activity of ERa. mTOR also acts as a coregulator for ERa [83,84]. ERa–PI3K
crosstalk has been studied intensively. In a recently identified mode of action, the PI3K pathway
regulates ER-dependent transcription in breast cancer cells through the epigenetic regulator
6 Trends in Endocrinology & Metabolism, Month Year, Vol. xx, No. yy
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KMT2D, and PI3K pathway inhibition activated the methyltransferase activity of KMTD2,
leading to the activation of ER [85]. PI3K inhibition increases ER levels and activity [79,85],
and PI3K inhibitor–endocrine agent combinations were tested with minor success in clinical
trials to treat women with endocrine-resistant disease (NCT01339442, NCT02273973) [86,87].
Clinical trials are ongoing with next-generation PI3K inhibitors (NCT01971515, NCT03056755,
NCT02684032, and NCT02437318) in advanced hormone receptor-positive breast cancers,
and positive results were reported recently [88,89].

ER–p53 Crosstalk
p53 is the best-known tumor-suppressor protein in the cell. The p53 pathway responds to
extracellular and intracellular stress conditions and controls cell-cycle checkpoints. ERs and
p53 directly regulate the expression of each other. Further, E2-induced cell proliferation was
shown to be regulated by p53 or via direct interaction between ERa homodimers and the p53
heterocomplex [90,91]. Recent studies showed that ERa/p53-mediated transcriptional regu-
lation was attenuated by ERb through a direct physical interaction between ERb and p53 [92].
Somatic loss of ERb accelerates the formation of p53-deficient mammary tumors, suggesting a
protective role of ERb against breast tumorigenesis [93].

ER–c-MYC Crosstalk
The c-MYC pathway regulates cell growth and proliferation. It was recently shown to orches-
trate metabolic pathways which supply nutrients and other required elements to activate DNA
replication and cell division. c-MYC is a proto-oncogene and a direct target and coregulator of
ERa in breast cancer [94]. Upregulation of c-MYC and its downstream effectors is associated
with poor disease outcome, high metastatic capacity, and endocrine resistance in breast
tumors [95]. ERa and c-MYC act synergistically to induce cell proliferation [96,97]. A recent
study found that ER and HER2+ crosstalk regulates glutamine metabolism through c-MYC in
aromatase inhibitor-resistant cells [98].

Metabolic Alterations in Endocrine-Resistant Breast Tumors
Selective estrogen receptor modulators (SERMs), downregulators (SERDs), and aromatase
inhibitors are the first-in-line treatment strategy for ER+ tumors [99]. However, one-third of all
ER+ breast tumors eventually develop resistance to these treatments. Drug-resistant and meta-
static clones are selected as tumors reprogram their metabolism to adapt to poor perfusion,
transient nutrient deprivation, and increased acidity. Identification of the crosstalk between ER
signaling and endocrine resistance-driven metabolic alterations will be crucial to overcome resis-
tance. Moreover, the distinct metabolic programs define metastatic organ sites for breast cancer
cells; for example, activation of AKT and glycolytic pathways was seen in liver-specific metastases,
emphasizing the importance of unique metabolic pathway adaptations in cancer cells [100].

Metabolic enzymes which facilitate reactions in the committed steps of glycolysis are
dysregulated and are potential targets in recurrent breast tumors. PFKFB3 is an activator
of PFK1, the key regulator of the second committed step in glycolysis. Several groups
showed that targeting PFKFB3 may be a potential strategy to overcome endocrine resistance
[43,101]. Inhibition of HK2, which facilitates the first committed step of glycolysis, is associ-
ated with retarded growth of tamoxifen-resistant breast tumors. HIF-1a hyperactivation via
modulation of the AKT/mTOR and/or AMPK signaling pathways contribute to tamoxifen
resistance [102]. Of note, a novel epigenetic modulator, NSD2, is upregulated in tamoxifen-
resistant cells, leading to methylation of the promoters of genes encoding key glucose
metabolic enzymes such as HK2 and G6PDH as well as TIGAR [103]. These results reveal
Trends in Endocrinology & Metabolism, Month Year, Vol. xx, No. yy 7
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that endocrine resistance is promoted by multiple mechanisms that induce glycolytic flux in
breast cancers.

Mitochondrial respiration rates are higher in endocrine-resistant cells than in the parental cells.
In tamoxifen-responsive cells, 4-hydroxy-tamoxifen (4-OHT) treatment reduces mitochondrial
activity [104]. Elevated ERa expression increases the expression of NRF-1 and TFAM, leading
to increased OXPHOS activity in endocrine-resistant tumors [105,106]. In addition, tamoxifen-
stimulated mitochondrial ERb has an antagonist role in breast cancer cells by increasing the
concentrations of reactive oxygen species (ROS) in the mitochondria [107]. In addition,
enhanced mitochondrial function and oxidative stress lead to tamoxifen resistance in MCF-
7 breast cancer cells, and GCLC and NQO1 were suggested as potential biomarkers to target
mitochondrial activation in tamoxifen resistance [108]. A recent biomarker study proposed
more than 60 genes, including mitochondrial ribosomal and mitochondrial complex proteins, as
novel mitochondrial biomarkers to predict early treatment failure and recurrence in patients
treated with tamoxifen [109]. Horizontal transfer and packaging of mitochondrial DNA are
significantly associated with the development of resistance to therapy. In addition, mitochon-
drial DNA acts as an oncogenic signal in cancer stem cells by sustaining OXPHOS-dependent
endocrine therapy resistance [110]. Loss of one of the key tumor-suppressor genes, RB1, is
associated with induction of mitochondrial protein translation and OXPHOS, leading to highly
aggressive metastatic breast cancers with high OXPHOS activity [111].

Tumor-associated cells in the tumor microenvironment and the fuel sources used for mito-
chondrial respiration are crucial in endocrine resistance. Cancer-associated fibroblasts (CAFs)
enable cancer cells to survive by providing lactate and ketone bodies to enhance their
mitochondrial activity. Inhibition of mitochondrial activity with metformin and arsenic trioxide
(ATO) overcomes fibroblast-induced tamoxifen resistance in ER+ breast cancer cell lines [112].
In addition, increased PI3K/AKT pathway activity in CAFs facilitates multidrug resistance in both
ER+ and ER� breast tumors by exporting GPERs outside of the nucleus via the nuclear exporter
CRM1 (XPO1). This mechanism was suggested to sustain excess pyruvate and lactate
concentrations as a result of enhanced glycolysis and mitochondrial activity during the devel-
opment of endocrine resistance [113]. Of note, CAFs also drive trastuzumab resistance in
HER2+ breast cancers through expanding NF-kB, JAK/STAT, and PI3K/AKT pathways with
increasing IL-6 expression [114].

Drug-resistant breast cancer cells have a distinct amino acid signature compared to non-
resistant cells. The ratio between glutamine and glutamate levels is used as a biomarker for
tumor aggressiveness and endocrine resistance in breast cancer cells [12,98]. Aromatase
inhibitor-resistant breast cancer cell lines upregulate transporters involved in glutamine uptake
[12,98]. In addition, tamoxifen-resistant cell lines are more sensitive to cysteine levels than are
tamoxifen-sensitive lines [115]. Doxycycline-resistant MCF-7 breast cancer cells have higher
levels of cysteine/methionine-regulating enzymes (such as CBS, MTHFR, and BHMT) than
doxycycline-sensitive cells. These studies highlight the success of combination treatment
strategies involving hormonal/targeted therapy agents in conjunction with agents targeting
amino acid biosynthesis pathways.

Lipid metabolism is also altered during the development of drug resistance. Inhibition of ACC-1
via leptin and TGF-b signaling causes elevation of acetyl-CoA, leading to recurrence and
metastasis in breast cancer cells [116]. Furthermore, recent metabolic profiling data from
several breast cancer studies revealed that nucleic acid and cholesterol synthesis pathways are
activated during the development of tamoxifen resistance in breast cancer cells. Consistent
8 Trends in Endocrinology & Metabolism, Month Year, Vol. xx, No. yy
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with these data, combining cholesterol-lowering medicines with endocrine treatment was
shown to improve metabolic outcomes in endocrine-resistant breast cancer cells [117]. In
addition, neutral lipids, lipid droplets, and free cholesterol accumulate in tamoxifen-resistant
breast cancer cells compared to non-resistant cells [118]. Furthermore, differences in lipid
metabolic pathways provide novel vulnerabilities in ER+ tumors that might be targeted with
available inhibitors [119].
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Figure 1. Metabolic Enzymes, Metabolites, and Macronutrient Transporters Regulated by Estrogen Signaling. Enzymes and macronutrient transporters
which are upregulated by estrogen signaling and high metabolite levels are shown in red. Enzymes and macronutrient transporters which are downregulated by
estrogen signaling and low metabolite levels are shown in blue. *Indicates high expression levels of metabolic enzymes, metabolites, and macronutrient transporters in
breast cancers. Abbreviations: ACC, acetyl-CoA carboxylase; ACLY, ATP citrate lyase; ACS, acetyl-CoA synthase; ASL, argininosuccinate lyase; ATP S, ATP synthase;
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Liquid Biopsies To Detect the Metabolic Status of Tumors
The emerging field of liquid biopsies to diagnose patients, follow-up treatment responses, and
monitor recurrence is gaining popularity in the clinic. The aim of the liquid biopsy is to collect
blood, saliva, or urine samples from the patients to detect circulating tumor cells (CTCs) and/or
other circulating factors (e.g., metabolites, DNA, or RNA). Following sample collection, metab-
olites in these samples can be analyzed with a wide array of techniques such as sequencing,
nuclear magnetic resonance (NMR), and liquid or gas chromatography (LC/GC). This approach
can be used for the early detection and genotyping of cancer cells [120], monitoring the
metabolic effects of a treatment strategy, predicting drug response or resistance [121],
metastatic capacity [122], or for detecting specific targetable mutations for therapy selection
in breast cancers. For example, comparison of plasma samples from breast cancer patients
and healthy individuals showed that high levels of cortisol, glutamine, L-arginine, linoleic acid, L-
lysine, L-valine, uric acid, tyrosine, and phenylalanine were associated with breast cancer
[123,124]. High levels of histidine, acetoacetate, glycerol, pyruvate, glycoproteins, mannose,
glutamate, and phenylalanine were reported to be associated with metastatic phenotype in
breast cancers [122]. Recently, several clinical trials used the identification of PI3KCA mutations
in circulating tumor material to predict outcomes of inhibitor treatments targeting the PI3K
pathway [125].
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Figure 2. Abnormal Estrogen Signaling Stimulates Cell Proliferation and Growth in the Mammary Tissue.
This situation triggers various stress stimuli in a solid tumor, such as poor perfusion, transient nutrient deprivation and
increased acidity. All these external factors activate different stress-associated pathways in the cell and eventually promote
cell proliferation and create hypoxia in the core of the tumor. In addition, estrogen receptor (ER)-dependent regulator
mechanisms are not unidirectional. These pathways also regulate genomic, extranuclear, and post-translational regulation
of ERa, and upregulate several downstream targets to promote pathways associated with various hallmarks of cancer,
such as angiogenesis, metabolic deregulation, drug resistance, and metastasis.
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Outstanding Questions
What are the main metabolic charac-
teristics of endocrine-resistant
tumors?

Are there metabolic phenotype differ-
ences between endocrine resistant-
tumors that arise through different
mechanisms?

What effects does genomic and non-
genomic estrogen signaling have on
glycolytic and mitochondrial oxidation
pathways?

Does estrogen signaling directly regu-
late amino acid metabolism?
Concluding Remarks and Future Perspectives
Estrogen signaling has a significant impact on how breast cancer cells rewire their metabolic
pathways to meet their high energy demand during proliferation (Figures 1 and 2). These
alterationscan beseen in all aspectsofmacronutrient metabolism, includingpathways associated
with glucose, glutamine, and fatty acid metabolism. Early differences in metabolic phenotypes
might inform clinicians about recurrence and havepotential for use as biomarkers in theclinic toaid
in therapy decisions for breast cancer. Liquid biopsy for circulating markers of metabolic phe-
notype of tumors offers early detection, monitoring, and prediction of therapy responses in clinic.
Understanding how ERs regulate these pathways is crucial because this new knowledge will
reveal new vulnerabilities to overcome drug resistance in different breast cancer subtypes.
Specifically, further studies will be necessary toelucidate thecrosstalkbetween estrogen signaling
elements and key metabolic regulators to better target ER+ breast cancers by combining
endocrine therapy options with metabolic inhibitors (see Outstanding Questions).
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