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Alzheimer’s disease (AD) is a heterogeneous and devastating neurodegenerative disease with
increasing socioeconomic burden for society. In the past 30 y, notwithstanding advances in the
understanding of the pathogenesis of the disease and consequent development of therapeutic
approaches to novel pathogenic targets, no cure has so far emerged.

This contribution focuses on recent nutritional approaches in the risk reduction and manage-
ment of AD with emphasis on factors providing a rationale for nutritional approaches in AD,
including compromised nutritional status, altered nutrient uptake and metabolism, and nutrient
requirements for synapse formation. Collectively these factors are believed to result in specific
nutritional requirement in AD. The chapter also emphasizes investigated nutritional interventions
in patients with AD, including studies with single nutrients and with the specific nutrient
combination Fortasyn Connect and discusses the current shift of paradigm to intervene in earlier
stages of AD, which offers opportunities for investigating nutritional strategies to reduce the risk
for disease progression.

Fortasyn Connect was designed to enhance synapse formation and function in AD by addressing
the putative specific nutritional requirements and contains docosahexaenoic acid, eicosapentae-
noic acid, uridine-5’-mono-phosphate, choline, phospholipids, antioxidants, and B vitamins. Two
randomized controlled trials (RCTs) with the medical food Souvenaid, containing Fortasyn Connect,
showed that this intervention improved memory performance in mild, drug-naïve patients with
AD. Electroencephalography outcome in one of these clinical studies suggests that Souvenaid has
an effect on brain functional connectivity, which is a derivative of changed synaptic activity. Thus,
these studies suggest that nutritional requirements in AD can be successfully addressed and result
in improvements in behavioral and neuro-physiological alterations that are characteristic to AD.

The recent advance of methodologies and techniques for early diagnosis of AD facilitates the
investigation of strategies to reduce the risk for AD progression in the earliest stages of the disease.
Nutrition-based approaches deserve further investigation as an integral part of such strategies due
to their low risk for side effects and their potential to affect pathological processes of very early AD.

� 2013 Elsevier Inc. All rights reserved.
Introduction Thus, more effective therapies and novel strategies leading to
Alzheimer’s disease (AD), the most common form of de-
mentia, is estimated to reach 100 million cases worldwide by
2050 [1,2]. It imposes a significant burden on patients, caregivers,
and health care systemsdthe estimate in the United States alone
is for an increase in health care budget for AD and other
dementias from $200 billion in 2012 to $1.1 trillion in 2050 [3].
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improved disease management or risk reduction would have
enormous socioeconomic effect.

Although AD was first identified more than 100 y ago, mec-
hanistic studies and therapeutic developments for this devas-
tating disease have gained momentum mostly in the past 30 y.
Extraneuronal senile plaques and intraneuronal neurofibrillary
tangles are two hallmarks of disease pathology in AD brain.
Clinical manifestations include cognitive impairment and de-
mentia. However, more subtle synaptic changes may occur years
before such pathological and clinical symptoms manifest. Such
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Fig. 1. Hypothetical model of dynamic biomarkers and nutritional status across the AD spectrum (adapted from Sperling et al, 2011 [8], with permission from Elsevier).
Biomarkers including Ab, synaptic dysfunction, tau-mediated neuronal injury and brain structure, change from normal to maximally abnormal (left y-axis) as disease
progresses (details referred to [8]). The temporal trajectory of two key indicators for clinical stages of disease, cognition and clinical function, are also included. Compromised
nutritional status has been highlighted with purple shades. Compromised micronutrients and fatty acids status have been implicated throughout the whole disease spectrum.
Such compromised nutrient status may result from alterations in nutrient intake, reduced endogenous biosynthesis of nutritional compounds, and compromised nutrient
absorption and uptake. With the disease progression, protein-energy malnutrition becomes prevalent at the demented stage of AD and the resulting weight loss is a common
problem at this stage. Protein-energy malnutrition has been reported to be present in 50% of AD patients with severe AD [16].
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a continuum of synaptic loss is strongly correlated with cognitive
impairment [4–7]. With the recent advance inmethodologies and
techniques for early diagnosis of AD, especially the continuing
maturation of structural, functional, and molecular imaging (i.e.,
magnetic resonance imaging [MRI], positronemission tomography
[PET] or single-photon emission computed tomography [SPECT])
and identification of reliable cerebrospinal fluid (CSF)/plasma
biomarkers, the research focus has shifted to the earliest stages of
AD and strategies to reduce the risk for disease progression [8].

Mounting evidence points to the important role of nutrition
in relation to cognitive function, especially during aging [9]. The
maintenance of healthy neurons relies on adequate supply of
nutritional compounds, which are mostly acquired from the diet.
For instance, docosahexaenoic acid (DHA) from dietary intake is
important for the formation of neuronal membranes. Choline is
a precursor for the neurotransmitter acetylcholine and it also is
used in the synthesis of neuronal membrane. For other nutrients’
roles in the structure and function of the nervous system one can
refer to a review by Bourre [10]. Furthermore, lower intakes of
certain nutrients (i.e., DHA, B vitamins, and antioxidants) have
been linked to increasing risk for AD and a diet rich in the
aforementioned nutrients has shown to decrease the risk for
AD [11–14]. Hence, in addition to pharmaceutical therapeutic
approaches and lifestyle modification, we postulate that nutri-
tional approaches are set to play an important role in future
management options for AD. This contribution focuses on
nutritional approaches investigated so far and their potentials as
risk reduction measures of AD.

Rationale for nutritional approaches in AD

Protein-energy malnutrition in AD

Impaired nutritional status has been reported in AD. Protein-
energy malnutrition is prevalent at the demented stage of AD
and increases with disease severity (Fig. 1). In mild to moderate
AD, 3% of the patients were reported to be malnourished [15],
whereas another study indicated that 50% of patients with severe
AD had protein-energy malnutrition [16]. Such compromised
protein-energy status could be due to worsening of appetite,
taste, and smell, which lead to reduced food consumption,
food neglect, and changes in food preferences [17–19]. Addi-
tionally, compromised nutritional status has been shown in older
individuals with AD living at home with their spouses; and
among them weight loss and malnutrition (undernutrition)
are a common problem [20–22]. Body mass index (BMI) and
mini-nutritional assessment (MNA) are two widely accepted
screening tools for the indication of malnutrition in the elderly
[23,24].

Lower micronutrients and fatty acid status in AD

In addition to the fact that patients with AD are at risk
for a compromised protein-energy status at the demented stage,
there also might be compromised micronutrients/u-3 fatty
acids during the entirety of disease progression (Fig. 1). Recent
meta-analysis has shown significantly lower plasma levels of
vitamins A, C, E, folate, and vitamin B12 in patients with AD
compared with cognitively intact elderly controls [25]. A trend
toward lower levels of vitamin D and zinc alsowas observed [25].
Plasma levels of other nutrients and vitamins have been reported
low in AD compared with age-matched healthy individuals (i.e.,
u-3 polyunsaturated fatty acids [PUFAs] [26–29] and selenium
[30,31]). Reduced uridine has been reported in the CSF of
patients with mild AD [32], whereas a trend toward lower
plasma uridine levels in mild AD comparedwith healthy controls
has been reported for the first time in a recent study [33]. In-
terestingly, increased cysteine associated with decreased uridine
is the best-paired combination to identify mild AD with speci-
ficity and sensitivity levels of above 75% [32]. Furthermore, lower
nutrient status has been shown in subjects with mild cognitive
impairment (MCI), that is, DHA content in phospholipids [26];
vitamins A, C, and E, lutein, zeaxanthin, and a-carotene [34,35];
and folate [36]. Taken together, observational studies suggest
that lower nutrient status is a consistent finding during disease
progression: It not only is a risk factor for onset of AD, but also



Fig. 2. Hypothetical model of increased nutrient requirements throughout the
whole AD stages. Lower nutrient status (e.g. of DHA, vitamins A, C, E, folate, and
vitamin B12) has been reported in patients with AD compared with cognitively
intact elderly controls. Such compromised nutritional status may result from
alteration in nutrient intake, uptake, metabolism, and utilization. First, worsening
of appetite, altered taste and smell might lead to smaller portions of food being
consumed, to food neglect, and to changes in food preferences, resulting in lower
intake of specific nutrients. Second, compromised nutrient uptake and metabolism
(e.g., due to compromised liver function) result in lower concentration in the
circulation. Third, AD-specific pathology may result in higher utilization and needs
of specific nutrients (e.g., for neuronal membrane and synapse formation). Collec-
tively, these factors result in a putative increased nutrient requirement that is
specific to AD.
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presents in the early stage of AD including MCI, in the absence of
protein-energy malnutrition.

Compromised nutrient intake, uptake, and metabolism

Such lower nutrient status may result from various factors
including alterations in nutrient intake, reduced endogenous
biosynthesis of nutritional compounds, and compromised nu-
trient absorption and uptake. For instance, it has been reported
that de novo synthesis of DHA in the liver is reduced in patients
with AD [37,38]. Endogenous uridine-5’-monophosphate (UMP;
a source of uridine) synthesis in the liver may decline with aging
and be further impaired in AD, which may be attributed to
aging-related decline in liver function and accelerated loss of
liver function in AD [32,39]. The uptake of choline from the
circulation into the brain decreases with aging and such reduced
uptake of choline from the plasma may result in increased
degradation of membrane phosphatidylcholine (PC; the most
abundant phospholipid in the brain) in order to produce suffi-
cient amounts of the neurotransmitter acetylcholine [40–42].
In a recent systematic review, the pooled data from nine case–
control studies showed that patients with AD have low serum
levels of folate and vitamin B12, which are associated with
increased homocysteine (Hcy) levels [43]. Increased Hcy and low
B vitamin status are associated with reduced mobilization of
DHA from liver to plasma and peripheral tissue [44,45], and with
reduced choline synthesis and increased choline utilization
[46–48].

Nutrient requirements for synapse formation

In addition to altered uptake, synthesis, and metabolism of
nutrients in AD, the need for specific nutrients might be higher
due to AD specific pathology (i.e., synapse loss). Thus, it is
important to maintain optimal levels of such nutrients during
diseased states. Phospholipids account for approximately 20%
to 25% of the adult brain’s dry weight and form the backbone
of neuronal membranes including synaptic membranes [49].
Therefore, they are functionally essential for providing a suitable
environment to facilitate membrane-dependent processes, like
receptor activity and enzyme function [50,51]. Numerous studies
from the lab of Dr. Wurtman (MIT, Cambridge/USA) have shown
that membrane phospholipid synthesis can be increased through
administrationof substrates of theKennedypathway (i.e., uridine,
DHA, or eicosapentaenoic [EPA], and choline [52,53]). Further-
more, data have shown uridine can stimulate phospholipid
synthesis without diminishing acetylcholine synthesis or release
in rat brain slices; and dietary supplementation with UMP in-
creases acetylcholine level and release in striatum of aged rat
[54,55]. Supplemental intakes of B vitamins (folate and vitamins
B12 and B6) and dietary phospholipids may serve as cofactors to
increase the availability of choline and DHA for neuronal mem-
brane phospholipid synthesis [45,46,56]. Uridine or DHA, which
promote phospholipids’ synthesis, also have been shown to
increase synaptic protein levels, enhance neurite outgrowth, and
increase dendrite spine density, all indicative of synapse forma-
tion [52,57–60]. Chronic dietary supplementation with UMP and
DHA can ameliorate the hippocampal-dependent memory defi-
cits in environmentally impoverished rats or normal adult gerbils
[61–63]. Combined uridine and choline administration amelio-
rates cognitive deficits in spontaneously hypertensive rats,
a model with deficiency in visual selective attention and spatial
learning [64]. The largest effect on the aforementioned phe-
nomenon was observed with administration of DHA, UMP, and
choline in combination [65]. Furthermore, lower levels of DHA in
the brain make dendrites more vulnerable to Ab toxicity [66].
Supplementation of u-3 PUFAs or DHA can reduce Ab production
both in vitro and in vivo [67–69]. Chronic administration of DHA
ameliorates the impairment of spatial cognition learning ability in
Ab-infused rats [70].

Together, these data indicate that certain nutrients are rate-
limiting precursors for the formation of neuronal membranes,
synapses, and synaptic function. Because progressive loss of
synapses is an early and characteristic feature of AD, the re-
quirements for renewal of synapses might be higher in AD than
in healthy individuals.

Putative increased nutritional requirements in AD

The dietary factors in AD described in the previous sections
are hypothesized to result in a micronutrient and fatty acid
insufficiency, leading to a disease-specific nutritional require-
ment in AD, that is, a nutrient intake needed to compensate for
the lower nutrient status in AD and concurrently meeting the
higher nutrient needs resulting from the pathophysiological
processes. The major factors that contribute to the putative
increased nutritional requirement in AD are changes in eating
behavior, alterations in nutrient uptake and metabolism, and
increased needs for renewal of synapses (Fig. 2). Based on the
previously mentioned observations, the specific nutrient com-
bination Fortasyn� Connect, has been designed to enhance
synapse formation and function, by addressing the putative
specific nutritional requirements in AD [71]. It comprises the
combination of nutritional precursors and cofactors for mem-
brane synthesis, including DHA, EPA, UMP, choline, phospho-
lipids, folic acid, vitamins B6, B12, C, E, and selenium [71].
B vitamins, vitamins C and E, and selenium act as cofactors by
increasing the availability of membrane precursors or by directly
affecting the neuronal membrane or membrane synthesis,
and are all reported to be lower in AD. Fortasyn Connect’s



Fig. 3. Fortasyn Connect, present in the medical food Souvenaid, is designed to enhance synaptic formation and function. Fortasyn Connect comprises the nutritional
precursors and cofactors for the formation of phospholipids and neuronal membranes, the principal and rate-limiting constituents for the dendritic spines that, together with
presynaptic boutons form new synapses. Animal studies have shown that dietary enrichment with these constituents increases neuronal membrane formation, synaptic
protein levels, dendritic spine density, neurite outgrowth, neurotransmission, and receptor function [71]. Clinical studies have shown that the medical food Souvenaid,
improved memory performance in mild, drug-naïve patients with AD [89,90]. EEG data in one of these studies suggest that Souvenaid improves brain functional connectivity,
a derivative of changed synaptic activity [90]. Figure 3 was designed in collaboration with Medical Visuals, Maartje Kunen.
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hypothesized mode of action on enhancing synaptic formation
and function, and neuronal connectivity can be referred to
Figure 3. Preclinical studies showed that this specific nutrient
combination can enhance M1 muscarinic acetylcholine receptor
responses in vitro, and protect the central cholinergic system
against Ab-42–induced toxicity in a rat Ab-42 infusion model
[72,73]. Furthermore, dietary enrichment with Fortasyn Connect
can reduce AD pathology in young adult APPswe/PS1dE9 mice [74].
Additional data have confirmed the efficacy of dietary inter-
vention with Fortasyn Connect in alleviating spatial learning
deficits in APPswe/PS1dE9 mice [75]. Investigations on the effects
of this nutrient combination and other nutritional approaches
in AD are summarized in the next two sections.

Nutritional interventions studied in AD

Protein-energy supplementation by oral nutritional supplements
in AD

Nutritional approaches have been implicated in the mana-
gement of AD [76]. For instance, oral nutritional supplements
(ONS) using protein and energy supplementation have been
applied in AD patients at risk for malnutrition in hospital and
day-care centers; this resulted in significant improvements in
energy intake with ONS versus usual care [77,78].

Single- or multinutrient approaches in AD

Nutritional interventions using micronutrients/fatty acids
targeting cognition so far have shown contrasting results [79].
Although the majority of observational studies indicate that u-3
fatty acids (especially DHA) have beneficial effects in cognition,
meta-analysis has not shown that DHA supplementation can
slow the rate of cognitive and functional decline in AD patients
[80]. A positive effect of u-3 fatty acids was observed within
specific cognitive domains (i.e., immediate recall, attention,
and processing speed) in cognitively impaired non-demented
participants, but not in healthy or AD patients [80]. A single-
center, RCT has shown that Hcy-lowering B vitamins in very
high does can slow the rate of accelerated brain atrophy in
individuals with MCI [81]. In the same study, B vitamins have
shown to slow cognitive and clinical decline (secondary out-
come) in individuals with MCI, in particular in those with
elevated Hcy [82]. However, a meta-analysis on RCTs with folic
acid has shown lowered Hcy levels without significant benefit
on cognitive decline [83]. Nevertheless, supplementation with
vitamins B12, B6, and folic acid alone or in combination did
not improve cognitive function in individuals with or without
existing cognitive impairment, as indicated by a recent meta-
analysis [84]. No overall benefit has been observed in antioxi-
dant trials with vitamins E and C, a-tocopherol and b-carotene,
either as single-nutrient supplements or in combination [85–88].
Nutritional interventions using Souvenaid

The medical food Souvenaid� (Nutricia N.V., Zoetermeer, The
Netherlands) contains Fortasyn Connect, and has been investi-
gated in several RCTs. Souvenaid showed improved performance
in the delayed verbal memory task derived from the Wechsler
Memory Scale-revised in a 12-wk, RCT (Souvenir I) with 225
drug-naïve, mild AD patients [79,89]. This finding on memory
performance in mild AD has been confirmed and extended in
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a second double-blind RCT involving 259 drug-naïve patients
(Souvenir II) with longer duration of 24 wk [90]. During this trial,
Souvenaid significantly improved the memory domain Z score of
the Neuropsychological Test Battery. Electroencephalography
(EEG) measures, as a secondary outcome for derivative synaptic
connectivity, also were significantly improved in the Souvenaid
group, providing first support to the hypothetical mode of action
in patients [90]. An open-label extension (OLE) study to Souvenir
II showed that the use of Souvenaid for 48 wk is safe, well
tolerated, with intake adherence of �95%. Additionally, the
OLE demonstrated memory improvement during Souvenaid
intervention from 24 to 48 wk in both the active–active and
control–active groups [91]. A 24-wk, RCT with Souvenaid in
527 patients with mild to moderate AD in combination with
stable use of acetylcholinesterase inhibitors and/or N-methyl-
D-aspartate receptor antagonist showed good safety profile but
no improvement on the Alzheimer’s Disease Assessment Sca-
ledCognition subscale (S-Connect) [92]. The results of S-Connect
study in mild to moderate AD, the positive outcomes in mild AD
from Souvenir I and II and the view that synaptic dysfunction is a
very early event, suggest that this nutritional intervention tar-
geting synapse formation and function might offer the greatest
potential when applied to earlier stages of AD, for example, in
those individuals with MCI due to AD.

Future directions: toward nutrition as integrated part
of strategies to reduce the risk for AD

Preventive initiatives

With the advance of diagnostic methodology and technology,
in combination with the understanding of the disease patho-
genesis, a paradigm shift to earlier diagnosis and treatment of AD
is occurring [79]. Such a paradigm shift is a strategic continuum
from disease management in AD, to early diagnosis and treat-
ment in subjects in the prodromal/preclinical stages of AD and
eventually to risk reduction in the general aging population.
Three ongoing, US-led prevention initiatives have formed a new
group: the Collaboration for Alzheimer’s Prevention (CAP). These
initiatives, including A4 (Anti-Amyloid Treatment in Asymp-
tomatic AD), DIAN (Dominantly Inherited Alzheimer Network),
and API (Alzheimer’s Prevention Initiative), serve as a platform
to search for reliable biomarkers in presymptomatic popula-
tions and to develop treatment strategies for such populations
[93–95]. Additionally, Zinfandel-Takeda Pharmaceuticals Alli-
ance’s Phase III primary prevention study in cognitively normal
elderly participants (w 5000 individuals, 5 y study) has been
announced [96]. With a similar goal, The Alzheimer’s Disease
Neuroimaging Initiative (ADNI) is also aiming to validate the use
of biomarkers and MRI/PET imaging for AD clinical trials and
early diagnosis.

Nutrition-based approaches for reduction of AD risk

In alignment with such preventive initiatives, nutrition can
make an important contribution [97]. Epidemiologic evidence
shows that moderate intake of unsaturated fats during midlife
may be protective, whereas a moderate intake of saturated fats
may increase the risk for dementia and AD, especially among
ApoE4 carriers [98,99]. Additionally, the Mediterranean diet
(a diet rich in fish, fresh fruit, and vegetables) is associated with
a lower risk for developing MCI and AD [100–102]. In the Fra-
mingham Heart Study with 9.1 y of prospective follow-up, the
greater mean fish intake was associated with greater plasma PC
DHA content, which was associated in turn with decreased risk
for AD as well as all-cause dementia [103]. Several nutritional
prevention studies have been completed and the outcomes are
not consistent [79]. For instance, the results of u-3 PUFAs/DHA
supplementation on behavioral outcomes in the elderly deserve
cautious interpretation, with one study reporting a benefit
on cognitive performance in healthy elderly individuals with
age-related cognitive decline [104], whereas the other did not
showa benefit in cognitively healthy elderly people due to lack of
cognitive decline during the 24-mo intervention period [105].
This suggests u-3 PUFAs used in isolation might be efficacious
only in a carefully chosen target population and with a longer
intervention period.

Folic acid fortification was originally introduced to prevent
neural tube defects in infants; however, serum folate and vitamin
B12 status also have been suggested to influence cognitive decline
in elderly [106,107]. Studies have shown that in elderly with
normal vitamin B12 status, high serum folate status through
fortified food and/or supplementation is associated with pro-
tection against cognitive decline [108,109]. However in elderly
with low serumvitamin B12 levels, high serum folate is associated
with cognitive impairment [108,110]. A 3-y double-blind RCT
showed folic acid supplementation in the elderly with normal
serum vitamin B12 levels improved domains of cognitive function
that tend to decline with age [111]. Overall, although no definite
conclusion can be drawn at the moment, high serum folate
in combination with normal vitamin B12 status can potentially
reduce cognitive decline in elderly individuals [107].

The FINGER (Finnish Geriatric Intervention Study to Prevent
Cognitive Impairment and Disability) study is an ongoing mul-
ticenter RCT involving 1200 participants ages 60 to 77 y. This
2-year, multidomain lifestyle intervention study includes nutri-
tional guidance, exercise, cognitive training, increased social
activity, and intensive monitoring and management of metabolic
and vascular risk factors. It aims to prevent cognitive impair-
ment, dementia, and disability among high-risk individuals
[112]. The MAPT (French Multi-domain Alzheimer Preventive
Trial) also aims to evaluate the efficacy of an integrated inter-
vention (nutritional, physical, and cognitive training) and u-3
supplementation in the reduction of cognitive decline in frail
elderly persons aged �70 y; the final result is expected to be
known this year [113]. Other ongoing nutritional interventions in
cognitive aging or MCIs are presented in Table 1.

Souvenaid in prodromal AD

Although administration of u-3 fatty acid (DHA and EPA) in
patients with mild to moderate AD did not delay the rate of
cognitive decline, positive effects were observed in a very small
subgroup with very mild cognitive dysfunction (Mini–Mental
State Examination [MMSE] > 27 points) [114], suggesting that
interventions early in the disease might have a higher chance
of success. Similarly, the Souvenir I clinical trial reported the
greatest effect of Souvenaid in the prespecified population of
patients with very mild AD (mean baseline MMSE ¼ 25.61) [89].
These observations together with epidemiologic data of dietary
patterns on risk reduction of AD, suggest a greater opportunity to
intervene successfully in very early stage of AD. A double-blind
RCT is ongoing within LipiDiDiet program (FP7-211696) to
study the effect of Souvenaid in prodromal AD with Neuro-
psychological Test battery as primary outcome (LipiDiDiet,
NTR1705, Table 1) [115]. Approximately 300 patients are to be
recruited and given Souvenaid for a minimum of 2 y, and
measures will be taken onwell-established cognitive, pathologic,



Table 1
Ongoing nutritional interventions in individuals with cognitive aging or mild cognitive impairment (MCIs)

Ongoing studies Participants Mean follow up Nutrients 1) Primary outcome
2) Secondary outcome

LIPIDIDIET NTR1705 1) 300 Prodromal AD as defined by
episodic memory disorder and evidence
for underlying AD pathology (Dubois
et al, 2007)
2) 55 - 85 years
3) MMSE � 20

2 y 125 mL of Souvenaid�, once daily 1) Cognitive performance during 24 mo of intervention as
measured by a modified version of the NTB (Harrison et al,
2007)
2) Progression to dementia; cognitive performance (MMSE,
13-item ADAS-cog); functional abilities (ADCS-ADL);
occurrence of depressive symptoms (MADRS); plasma
biomarkers; atrophy rates on MRIs; nutritional (blood)
parameters; tolerance and safety

BERRY NCT01515098 1) 132 MCIs
2) � 65 y

6 mo 35 g freeze-dried blueberries 1) Change in cognitive test performance
2) Change in body mass distribution; change in oxidative stress
and inflammatory markers as measured in blood and urine

NCT00599508 1) 60 MCIs
2) � 66 y

16 wk Purple grape juice 1) Memory performance
2) Cortisol

NCT01571193 1) 212 nondemented participants with
either normal cognition or amnestic MCIs
2) 50–75 y

1 y 1000 mg pomegranate extract 1) Improved cognitive performance

NCT01219244 1) 330 participants with mild cognitive
impairment
2) 50–80 y
3) Moderate to heavy weight (BMI
25–35 kg/m2)

Dietary intervention:
6 moExercise/ cognitive
training: NA

Dietary intervention (caloric restriction, u-3 fatty
acids and resveratrol) and in combination with
exercise and cognitive training

1) ADAS-cog
2) Functional/structural brain changes and plasma biomarkers

MAPT NCT00672685 [113] 1) 1200 frail elderly with subjective
memory complaints
2) � 70 y

3 y Multidomain intervention (nutritional, physical, and
cognitive training) and DHA (800 mg/d)

1) Changes in memory function scores determined by Gröber
and Buscke test
2) Changes in other cognitive functions; changes in functional
capacities. To study the long-term safety and tolerability of
DHA treatment. To study compliance and adhesion to
“multidomain” intervention program

Efalex Active 50þ
NCT01185379

1) 250 healthy elderly
2) 50–70 y
3) MMSE >24;
4) Participants suffering from a memory
complaint (MAC-Q score > 24)

6 mo Efalex Active 50þ, a dietary supplement containing
DHA, phosphatidylserine, vitamin B12, folic acid and
Ginkgo biloba

1) Cognitive performance (attention, memory, executive
function)
2) Cerebral hemodynamics; mood/well-being

Alois de Montauban study 1) 4000 individuals
2) � 67 y

5 y DHA 1) Prevent development of neurodegenerative disease
2) Prevent development of AD

EPOCH ACTRN
12607000278437 [116]

1) 400 elderly;
2) 65–90 y;
3) Score � 24

1.5 y u-3 PUFAs430 mg DHA þ 150 mg EPA 1a) Rate of cognitive decline
b) Change in well-being measures;
2) Plasma fatty acid changes, blood pressure, oxidative stress,
and inflammation

PREADVISE NCT00040378 1) 10 400 males with no neurologic or
psychiatric illness
2) 60–90 y

7–12 y Vitamin E þ Selenium (400 IU þ 200 mcg/d) 1) Prevention of AD as measured by Memory Impairment Screen

NCT00996229 1) 300 healthy adults;
2) 50–80 y;
3) Moderate to heavy weight (BMI
25–30 kg/m2)

6 mo Caloric restriction or dietary supplementation (2 g/d
DHA/EPA or resveratrol)

1) Auditory verbal learning task
2) Functional/structural brain changes and plasma
biomarkers

B-PROOF NCT00696514
[117]

1) 3000 healthy elderly
2) � 65 y
3) Fasting plasma homocysteine �12 and
<50 mmol/L

2 y Folic acid (400 mcg) þ vitamin B12 (500 mg) þ
vitamin D3 (600 IU); placebo (vitamin D3 600 IU)

1) Fractures
2) Cognitive decline; bone health; physical performance; QoL;
nutritional status

NCT01164020 1) 80 healthy women
2) � 60 y

23–24 wk Creatine supplementation (20 g/d for 7 d followed
by 5 g/d for 23 wk) in combination with resistance
training

1) Cognitive function
2) Physical capacity, muscle strength, and function

(Continued on next page)
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and biomarkers. The outcome of this study will be a first indi-
cation of whether Souvenaid is efficacious in slowing down
cognitive decline in the most dominant and relevant risk group
who have amnestic MCI due to AD. Furthermore, this study will
give guidance on future investigation of nutritional interventions
on an earlier stage of presymptomatic AD.

Conclusion

Current advances in earlier diagnosis of AD facilitates inves-
tigation of the idea that interventions targeting prodromal stage
or even earlier stages of ADmight be more effective than at more
advanced clinical stages, when damaging pathophysioloigical
changes may have accumulated to an irreversible degree. Effec-
tive, nutrition-based approaches would be of great benefit due
to a relatively low risk for side effects in a presymptomatic
or prodromal, and relatively healthy population allied to the
necessarily long exposure time. Based on results so far, and the
notion that synaptic dysfunction is an early phenomenon in
the AD spectrum, a nutritional approach targeting synaptic
dysfunction deserves further investigation as an integral part of
strategies to reduce the risk for AD progression.
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