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Glucomannan minimizes the
postprandial insulin surge: a potential
adjuvant for hepatothermic therapy

Mark F. McCarty
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Summary Glucomannan (GM) is differentiated from other soluble fibers by the extraordinarily high viscosity of GM

solutions. Administration of 4±5 g of GM with meals, blended into fluid or mixed with food, can slow carbohydrate

absorption and dampen the postprandial insulin response by up to 50%. Controlled clinical studies document that GM can

promote satiety and weight loss, lower LDL cholesterol, improve diabetic control, and correct constipation, with minimal if

any side-effects. Rodent studies suggest that GM may have potential for decreasing cancer risk and possibly even

slowing the ageing process. Hepatothermic therapy, a technique for achieving rapid loss of body fat by optimizing the

liver's capacity for fat oxidation, can only achieve its optimal efficacy if diurnal insulin levels are kept low; ingestion of

GM with meals will evidently be of benefit in this regard by moderating postprandial insulin surges. & 2002 Published by

Elsevier Science Ltd.
GLUCOMANNAN CAN LOWER THE EFFECTIVE

GLYCEMIC INDEX OF MEALS

Supplemental soluble fiber, taken with or prior to meals,
has potential utility for lowering LDL cholesterol, pro-
moting weight loss, and aiding diabetic control (1±3). Of
the many types of soluble fiber that have been tested for
these purposes, glucomannan, a slightly branched and
lightly acetylated polymer consisting of glucose and
mannose (roughly in the ratio of 3 : 5) connected by b1!4
linkages, derived from the traditional Japanese food
konjac root, appears to have the greatest practical poten-
tial (4±6). This reflects the exceptionally high viscosity of
solutions of this fiber; 1% solutions of glucomannan (GM)
are about 10-fold more viscous than comparable solutions

of guar gum, and over a hundred-fold more viscous than
pectin solutions (4,6). For this reason, relatively modest
daily intakes of GM (as low as 4 g per day) can exert
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worthwhile clinical effects. Garcia and colleagues grasp
the implications of their viscosity studies when they
conclude that `glucomannan appears to be the fiber best
suited for use as a dietary supplement in the treatment of
excess weight, constipation, hyperlipidemia, and diabetes'
(6). A further advantage is that refined konjac GM pre-
parations (such as PropolTM) are virtually flavorless, and, if
stirred briskly into water or juice and consumed quickly,
are not associated with an unduly viscous or gritty
mouthfeel (5). Fortunately, the viscosity of a newly made
1% solution of GM develops gradually, rising to over
10 000 cps after an hour and reaching a peak at about
5 hours (at least 50 000 cps) (4).

Of particular interest is the fact that, when adminis-
tered prior to or during meals, pre-solubilized in fluid
or pre-mixed with food, GM in doses as low as 4±5 g
(approximately one teaspoon) can markedly reduce the
effective glycemic index of a meal (4,5,7±9). This is asso-
ciated with a comparable reduction in the postprandial
insulin surge. Indeed, two different research groups report
that postprandial peak insulin response, as well as area

under the insulin curve, can be reduced about 50% by
concurrent GM supplementation (4,5). A delay in gastric
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emptying (4), as well as retardation of the degradation and
absorption of carbohydrate (5) (and probably protein),
appear to account for this phenomenon. Fortunately,
although GM slows the absorption of dietary carbohy-
drate, studies show that it does not induce malabsorption
(4), and indeed tolerance to GM in clinical studies has
been excellent. (In this respect it contrasts notably with
a-glucosidase inhibitors such as acarbose, which com-
monly induce malabsorption-related side-effects.) Stool
volume invariably increases during GM administration (of
value to patients who are constipated) (10±12), but there is
little if any increase in flatus or other undesirable GI
symptoms. In the colon, GM is entirely degraded and
metabolized by gut bacteria (13); the increase in stool
weight thus reflects an increase in bacterial mass.

The reduction in postprandial glycemia achievable
with GM has evident utility in the management of
both types of diabetes (9,14±16). Indeed, the first clinical
report documenting the use of GM examined its impact
on diabetics, and noted that, in type 2 patients, fasting
glucose fell by an average of 29%, enabling a reduction
or discontinuation of medication in many instances (14).
A more recent shorter-term study from the University of
Toronto confirms the utility of GM in type 2 diabetes,
albeit the reduction in fasting glucose was less dramatic
(16). Why fasting glucose declines under these circum-
stances is not entirely clear; perhaps it reflects the fact
that postprandial insulin surges down-regulate periphe-
ral insulin receptors (17), a phenomenon that would be
minimized during GM administration.

BETTER CONTROL OF APPETITE AND LDL

CHOLESTEROL

A portion of the long-term impact of GM on insulin
sensitivity might be traceable to a reduction in body
weight. Several double-blind studies have concluded
that, even when administered in capsules in daily doses
as low as 4 g, GM can promote increased weight loss,
whether in the context of a hypocaloric diet (18±21) or
without a conscious effort at dieting (22). These studies
conclude that GM promotes satiety, and that some or
all of the bariatric benefit is attributable to decreased
caloric intake. A number of factors may contribute to
the increased satiety associated with GM administration,
including: increased gastric distention and delayed gas-
tric emptying (23), a blunting of the postprandial insulin
surge (24), and increased delivery of food to the terminal
ileum (where activated chemoreceptors transmit a satiety
signal) (25,26).

The ability of GM to decrease serum LDL cholesterol,
sometimes quite substantially (by 22% in a recent study

with insulin-resistant subjects) (27), has been documented
by several studies (22,27,28). In this regard, it should be
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noted that the recent Harvard meta-analysis exam-
ining the ability of supplemental soluble fiber to lower
cholesterol levels, which concluded that the achievable
benefits were disappointingly small relative to the incon-
venience involved, did not include GM studies in their
analysis (29). (For reasons unclear to me, American med-
ical scientists have almost totally ignored GM ± I could
find only one clinical study by American researchers
examining the effects of this fiber (22).) Generalizing from
studies with other soluble fibers, the reduction in LDL
cholesterol is likely to be attributable to increased activity
of 7-a-hydroxylase, rate-limiting for the conversion of
cholesterol to bile acids (30,31). By decreasing the enteral
formation (and possibly enhancing the excretion) of
hydrophobic bile acids such as deoxycholate (32), GM
should lessen feedback suppression of this enzyme (33).
Furthermore, the reduction in postprandial insulin lev-
els achievable with GM would be expected to increase
this enzyme's expression (33±35). Increased activity of
7-a-hydroxylase, in turn, would deplete the hepatic cho-
lesterol pool and thus up-regulate expression of the
hepatic LDL receptors.

FUTURE PROSPECTS

It has been argued on theoretical grounds that a mini-
mization of diurnal insulin levels could be expected to
decrease cancer risk and possibly even slow the ageing
process (at least in rodents), owing in part to down-
regulation of IGF-I activity (36±38). It is thus of interest to
note several reports that GM-rich diets can suppress
cancer induction in rodents (39±41). To the extent that
systemic IGF-I activity regulates the growth of pre-existing
cancer, GM administration might also have some mod-
est utility in cancer treatment. With respect to ageing,
Chinese researchers, examining age-related histological
changes during long-term feeding of rats with diets that
either were or were not enriched with GM, concluded that
GM may indeed slow the ageing process (42). If a sub-
stantial reduction in diurnal insulin levels is a key medi-
ator of the beneficial effects of caloric restriction (as some
believe) (36±38), it is not unreasonable to expect that GM
administration could likewise achieve these benefits to
some modest degree.

Minimizing diurnal insulin levels ± and thus avoiding
suppression of the liver's capacity for fatty acid beta-
oxidation ± is presumably key to the success of hepa-
tothermic therapy (HT) of obesity (43,44), this is why
low-glycemic-index foods and low-insulin-response meals
are recommended with this regimen. Evidently, adminis-
tration of GM with meals would be an appropriate adju-
vant measure for use with HT, particularly since many

patients will be less than totally compliant with food
choice recommendations. Furthermore, GM by itself can

& 2002 Published by Elsevier Science Ltd.
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promote weight loss ± an effect that would likely com-
plement the efficacy of HT in this respect. And when HT is
used to manage or reverse type 2 diabetes (45), the utility
of GM for minimizing postprandial glycemic excursions
would be of evident ancillary benefit. Thus, strong con-
sideration should be given to incorporating GM into the
standard HT regimen.
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