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Abstract
Ischemia is characterized by a transient, insufficient, or permanent interruption of blood flow to a tissue, which leads to an 
inadequate glucose and oxygen supply. The nervous tissue is highly active, and it closely depends on glucose and oxygen to 
satisfy its metabolic demand. Therefore, ischemic conditions promote cell death and lead to a secondary wave of cell damage 
that progressively spreads to the neighborhood areas, called penumbra. Brain ischemia is one of the main causes of deaths 
and summed with retinal ischemia comprises one of the principal reasons of disability. Although several studies have been 
performed to investigate the mechanisms of damage to find protective/preventive interventions, an effective treatment does 
not exist yet. Adenosine is a well-described neuromodulator in the central nervous system (CNS), and acts through four 
subtypes of G-protein-coupled receptors. Adenosine receptors, especially  A1 and  A2A receptors, are the main targets of caf-
feine in daily consumption doses. Accordingly, caffeine has been greatly studied in the context of CNS pathologies. In fact, 
adenosine system, as well as caffeine, is involved in neuroprotection effects in different pathological situations. Therefore, 
the present review focuses on the role of adenosine/caffeine in CNS, brain and retina, ischemic events.
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MCAO  Middle cerebral artery occlusion
NGF  Nerve growth factor
NICUs  Neonatal intensive care units
NO  Nitric oxide
NOS  Nitric oxide synthase
Nrf2  Nuclear factor erythroid 2-related factor 2
OGD  Oxygen glucose deprivation
OIR  Oxygen-induced retinopathy
OTH  Ocular hypertension
PKA  Protein kinase A
PKC  Protein kinase C
POAG  Primary open-angle glaucoma
ROP  Retinopathy of prematurity
ROS  Reactive oxidative species
SOD  Superoxide dismutase
TBARS  Thiobarbituric acid reactive substances
TIA  Transient ischemic attack
TNF-α  Tumor necrosis factor-alpha
tPA  Tissue-type plasminogen activator
VEGF  Vascular endothelial growth factor
VGCC   Voltage-gated calcium channels

Introduction

Hypoxia–ischemia (HI) is characterized by a local or sys-
temic, transient or permanent, interruption of blood flow, 
and oxygen supply, leading to an inability to meet cellular 
energy demands. When the CNS is affected, the cell death 
caused by ischemia provokes brain injury and neurologi-
cal disabilities. This pathological condition can affect both 
developing and mature CNS, with long-term consequences 
and few preventive/therapeutic interventions. In addition, 
all the main retinopathies that cause blindness in the world, 
such as age-related macular disease (AMD), glaucoma, 
and diabetic retinopathy (Bourne et al. 2017), display an 
ischemic component at some point of the disease, resulting 
in a worsening of visual impairment. So, ischemia is also a 
main problem in the ophthalmology field.

Since there is no effective treatment for ischemia, and 
concerning its negative outcomes, the importance to under-
stand the mechanisms of cell death and possible neuropro-
tective interventions becomes evident. Ischemia induces 
several alterations in cellular physiology, starting with a 
decrease in ATP production, that affects all ATP-dependent 
cellular functions, followed by the release of neurotransmit-
ters, such as glutamate, leading to excitotoxicity and cell 
death (Nicholls et al. 1987; Lipton 1999; Reid et al. 2003; 
Kostandy 2012; Mayor and Tymianski 2018). Moreover, 
there is also an increase in the extracellular availability of 
adenosine, both from ATP hydrolysis and by reversal of 
adenosine transporters (Melani et al. 2014b; Pedata et al. 

2016). A number of studies have demonstrated a role for 
adenosine receptors in hypoxic and ischemic conditions. 
Adenosine receptors are G protein-coupled receptors named 
 A1 and  A3, which classically inhibit adenylyl cyclase (AC) 
by activating Gi protein, while  A2A and  A2B increase AC 
activity through Gs/Golf (Borea et al. 2018).  A1 and  A2A 
are the most abundant adenosine receptors in the CNS, and 
several studies have shown their involvement in cell pro-
tection mechanisms. These receptors are non-selectively 
inhibited by low–moderate concentrations of caffeine that 
can be achieved by daily doses of coffee (Fredholm et al. 
2017). Caffeine is considered a mild stimulant to the CNS, 
and it can also be found in several other sources of foods 
and drinks consumed worldwide by the majority of adults 
(Heckman et al. 2010; Mitchell et al. 2014). Therefore, the 
present review will focus on studies that shed light into 
caffeine, as well as adenosine, as a promising therapeutic 
tool for ischemia. Moreover, it also brings data from epi-
demiology, health system costs, the mechanisms involved 
in ischemia-induced cell death, available treatments, and 
the present challenges. However, it is important to note that 
there is a robust amount of data on the roles of adenosine 
and caffeine on neurophysiology and neuroprotection, apart 
from ischemic context, that goes beyond the proposal of 
this review, but it is essentially connected to the subject and 
can be satisfactorily appreciated by some fulfilling readings 
(Cunha 2005, 2016; Costenla et al. 2010; Gomes et al. 2011; 
Dos Santos-Rodrigues et al. 2015; Kolahdouzan and Hama-
deh 2017; Liu et al. 2019; Lopes et al. 2019).

Epidemiology of Ischemic Events

Adult Stroke

Among neurological diseases, stroke accounts for the largest 
proportion of deaths (67.3%), disability-adjusted life years 
(DALYs—47.3%), and it is the third overall leading cause of 
death worldwide after heart disease and cancer (Moskowitz 
et al. 2010; GBD 2017; Lallukka et al. 2018).

Stroke is classified into two main categories: ischemic, 
when blood flow is interrupted by a clot/thrombus, account-
ing for 87% of the cases; or hemorrhagic, when there is a 
rupture of a blood vessel resulting in leakage to adjacent tis-
sue (Ovbiagele and Nguyen-huynh 2011; Bejot et al. 2016; 
Lee et al. 2018). As the nervous tissue has a high energy 
demand, the oxygen and substrate deprivation lead to irre-
versible damage detectable within minutes. Thus, it results 
in brain damage and neurological disabilities that can be 
reflected in impaired behaviors associated with memory, 
learning and locomotion (Janardhan and Qureshi 2004; Li 
et al. 2013; Lee et al. 2018).
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There are several risk factors associated with the inci-
dence of stroke, with hypertension being the most prevalent 
among modifiable ones, linked to 35% of the cases. Other 
risk factors include smoking, obesity, poor diet, sedentary 
lifestyle, diabetes mellitus, high alcohol consumption, psy-
chosocial factors, cardiac cause, and ratio of apolipoprotein 
B and apolipoprotein  A1 (O’Donnell et al. 2010; Soler and 
Ruiz 2010; Bejot et al. 2016). Many of these are considera-
bly easy to overcome, so preventive strategies should be used 
to reduce the risk and the cost of treatment. Non-modifiable 
factors connected to the pathology are as follows: age, as the 
incidence increases with aging (Wolf et al. 1992; Rosamond 
et al. 2008; Romero et al. 2008); gender, overall stroke inci-
dence is lower in women, even though these numbers change 
when incidence and mortality are analyzed at older ages 
(Rothwell et al. 2005; Löfmark and Hammarström 2007; 
Reeves et al. 2008); genetics/heredity; and ethnicity (Soler 
and Ruiz 2010).

The economic burden of the disease is extremely rel-
evant, as patients may need permanent care depending on 
the severity of the stroke (Table 1). In 40% of the cases, 
patients acquire moderate to severe impairment and need 
special care, while 10% need constant care in long-term care 
facilities (Rajsic et al. 2019). Table 1 also summarizes the 
current ischemic stroke treatment, which is based on two 
fronts approved by the United States Food and Drug Admin-
istration, along with its limitations.

Perinatal Hypoxia–Ischemia

Concerning prenatal developmental, HI may occur due to a 
mechanical process, placental insufficiency, prolonged labor 
or folds in umbilical cord (De Haan et al. 2006; Martinez-
Biarge et al. 2012), besides events of preeclampsia and 
maternal bleeding (Paolo 2012). There are also other risk 
factors, such as anemia, hypotension, multiple births, smok-
ing, and drug abuse (Pundik et al. 2006). Pre- and perinatal 
lesions alter CNS development, causing different outcomes 
according to the kind of insult, the developmental period, 
the intensity, and the affected area. HI events, in addition to 
causing newborns to die, are also the main triggering fac-
tor for encephalopathy (Kurinczuk et al. 2010) and perma-
nent brain damage in children (Johnston et al. 2009; Volpe 
2012). Perinatal hypoxic-ischemic encephalopathy (HIE) 
affects 1–3 of every 1000 babies born at term (Yang and 
Lai 2011). Of these children, 15–20% die in the postnatal 
period, characterizing HIE as one of the most significant 
causes of neonatal mortality. Of those who survive, 25% 
develop permanent neurophysiological consequences (Van-
nucci 2000; Chen et al. 2009). In spite of the advances in 
neonatal medicine, the proportion of infants diagnosed with 
neurological deficits after suffering perinatal insults remains 
stable (McIntyre et al. 2013).

In premature (or underweight) newborns, the numbers 
are even more alarming, since the incidence of perina-
tal asphyxia corresponds to around 60%, and 20–50% of 
the babies who have undergone HI events exhibit deficits 
later, such as difficulty in concentration, cognitive delay 
(Filloux et al. 1996; Gross et al. 2005), visual, motor and 
perceptual disorders, hyperactivity (Vannucci 2000; Perl-
man 2006) and, in even more severe cases, epilepsy and 
cerebral palsy (Nelson et al. 2003).

Cognitive damage, although strongly associated with 
neuromotor deficits, can be seen in children who have suf-
fered HIE, in the presence or absence of motor impair-
ments (Van Handel et al. 2007; Schreglmann et al. 2020). 
These sequelae can mark the school phase due to learn-
ing delays (Robertson and Perlman 2006) and the impair-
ments may persist throughout adolescence, with an intense 
reduction in episodic memory (Gadian 2000), poor per-
formance in executive functions, and visual and verbal 
memory (Mañeru et al. 2001).

Neonatal care represents a major burden for health sys-
tems around the world. Considering neonatal intensive 
care units (NICUs) in the US, there is an estimative of 
77.9 admissions per 1000 live births in the period between 
2007 and 2012 (Harrison and Goodman 2015). The dam-
age caused by HIE is associated with high morbidity and 
mortality, which requires the highest level NICU care and 
interventions. In this context, HIE newborns have been 
considered to be part of a small group of patients who con-
sume the major amount of NICU expenses (Bayne 2018). 
Information for expenditures and limitations of treatment 
for perinatal ischemia is summarized in Table 1.

In order to obtain therapies for the prevention of mortal-
ity and treatment of disabilities, the exploration of certain 
key factors involved in these damages is essential. Stud-
ies in animal models have revealed potential candidates 
for therapeutic intervention based on mechanisms anti-
excitotoxicity, anti-oxidation, anti-inflammation, and anti-
apoptosis (Greco et al. 2020).

Retinopathies with Ischemic Components

Ischemia may be considered a key factor in the patho-
physiology of visual diseases, including retinopathies. 
Retina has been classified as one of the most energeti-
cally demanding tissues, being even more metabolically 
active than the brain (Ames 1992; Yu and Cringle 2001; 
Wong-Riley 2010). The acute or chronic occlusion of reti-
nal microvasculature may impair retinal perfusion causing 
permanent visual loss, such as verified in glaucoma, DR, 
and AMD (Schmidt et al. 2008; Kaur et al. 2008; Szabadfi 
et al. 2010).
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Glaucoma

Glaucoma is an optic neuropathy whose main clinical sign 
is the increase in intraocular pressure (IOP) and the main 
outcome is progressive and irreversible visual loss. It is 
estimated to affect more than 60 million people worldwide 
(Quigley and Broman 2006) and this number is expected to 
increase to 111.8 million in 2040 (Tham et al. 2014). It is 
classified as a prevalent neurodegenerative disease (Jiang 
et al. 2020) and the most important cause of irreversible 
blindness (Tham et al. 2014).

Glaucoma has been considered a multifactorial disease 
with genetic and environmental components, with aging 
being the most important risk factor (Doucette et al. 2015). 
Although its pathophysiology has not been completely 
defined so far, some mechanisms are proposed to explain the 
causes underlying retinal ganglion cell death and optic nerve 
damage (Doucette et al. 2015). Ischemic conditions may 
be created by an increase in IOP which exerts pressure on 
retinal vasculature (Harris et al. 2001; Osborne et al. 2001). 
Besides, glutamate excitotoxicity (Casson 2006), oxidative 
stress (Ko et al. 2005; Tezel 2006; Gericke et al. 2019), and 
inflammation (Fontaine et al. 2002; Wong et al. 2015; Ger-
icke et al. 2019) have also a role in glaucoma pathogeny.

As current available interventions to treat glaucoma have 
several limitations, the development of new therapeutic 
agents is of great relevance concerning the economic burden 
represented by glaucoma treatment (Table 2).

Diabetic Retinopathy

Considering people in working age, DR is the leading cause 
of vision loss and blindness (Ding and Wong 2012; Yau 
et al. 2012). In general, one-third of the patients with DM 
may present DR (Nam Han Cho et al. 2017), being more 
prevalent among patients with type 1 DM (Tarr et al. 2012). 
For the next years, the number of people affected by DR is 
expected to dramatically increase, which reflects the high 
incidence of DM, obesity, and also population aging (Saad-
dine et al. 2008; Ting et al. 2016).

Retinal damage derived from chronic hyperglycemia in 
DM is complex, but the central event is attributed to oxi-
dative stress (Brownlee 2001; Arden and Sivaprasad 2011; 
Mendonca et al. 2020). Hyperglycemia-induced alterations 
cause endothelial cell dysfunction, breakdown of blood–reti-
nal barrier and increase in vascular permeability, leading 
to edema (Zhang et al. 2014; Stitt et al. 2016). Moreover, 
the production of trophic factors is reduced, which is asso-
ciated with capillary degeneration (Brownlee 2001; Arden 
and Sivaprasad 2011). As a result, the tissue responds to 
ischemic-induced signaling, triggering events of neovascu-
larization and generating an abnormal retinal vasculature, 
which characterizes the proliferative stage of the disease 

(Al-Shabrawey et al. 2013). Furthermore, the present view 
of DR involves neuroinflammation (Karlstetter et al. 2015; 
Yu et al. 2015), neurodegeneration (Kadłubowska et al. 
2016; Simó et al. 2018), and excitotoxicity (Kokona et al. 
2016; Ola et al. 2019) events that may precede vascular 
alterations.

The impacts of DR on visual function represent a rel-
evant challenge in public health, especially concerning care 
expenditures and treatments (Table 2). Besides the expenses 
directly related to healthcare, a significant economic impact 
of DR is linked to the insertion or permanency of these 
subjects in the job market (Rein et al. 2006). Thus, further 
studies are needed to develop new effective therapeutic 
treatments.

Age‑Related Macular Degeneration

AMD is a progressive degenerative disease that primarily 
impairs the central retina and leads to irreversible vision 
loss. It is currently considered a major cause of blindness 
in elderly people (Smith et al. 2001), affecting 170 million 
people in the world (Pennington and DeAngelis 2016). Stud-
ies project that the number of patients diagnosed with AMD 
may expand to 288 million by 2040 (Wong et al. 2014). The 
high number of cases is directly attributed to the increase in 
life expectancy, particularly in developed countries.

AMD consists of a multifactorial disease whose etiology 
comprises genetic and environmental elements. A series of 
genes have already been identified (Al-Zamil and Yassin 
2017) as well as lifestyle risk factors, such as light expo-
sure (Chalam et al. 2011), diet (Chapman et al. 2019), and 
tobacco smoking (Smith et al. 2001).

The disease can also be classified into two types: dry 
and wet AMD, although specific pharmacological options 
are only available for the treatment of wet AMD (Supuran 
2019) (Table 2), but there are no preventive strategies or 
cure (Hernández-Zimbrón et al. 2018). The burden related 
to AMD is highly underestimated (Brown et al. 2005); how-
ever, it is clear that vision loss negatively affects not only 
one’s health but also their contribution and interaction with 
others and consequently impacts society (Table 2).

Mechanisms of Cell Death Provoked 
by Ischemia

The development of new, and efficient, treatment depends 
on the profound understanding of cell death phenomenon 
during the time of ischemia itself and reperfusion period 
(Dirnagl et al. 1999). Ischemia refers to a pathological lack 
of blood supply to a given tissue, so its maintenance is 
drastically impaired (Fig. 1). When tissue perfusion is low, 
cells are deprived of oxygen and metabolic substrates, and 
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excretes begin to accumulate (Osborne et al. 2004; Kalogeris 
et al. 2016). Once a tissue becomes ischemic, a metabolic 
dysfunction is triggered. There is a decrease in glycolysis 
and oxidative phosphorylation, reducing ATP production, 
which, in turn, leads to failure in ionic pumps and ionic 
imbalance (Lipton 1999; Kalogeris et al. 2016). Reduction 
in sodium–potassium pump activity decreases the removal 
of intracellular sodium, affecting membrane potential main-
tenance, and consequently depolarizing cell membrane. 
Another result of cytoplasmic sodium accumulation is the 
passive influx of chloride, which also attracts water into the 
cell, causing cell swelling, and eventually, cell lysis, accom-
panied by cell content extravasation (Edinger and Thompson 
2004; Duprez et al. 2009; Galluzzi et al. 2012). This kind 
of acute death is known as necrotic cell death and occurs 
mainly at the core of the ischemic region. Voltage-gated cal-
cium channels (VGCC) are activated by this depolarization, 
increasing cytoplasm calcium concentrations and triggering 
neurotransmitter release (Mayor and Tymianski 2018).

Excitotoxicity

Glutamate is the major excitatory neurotransmitter in the 
CNS, and during ischemic events, a massive glutamate 

release occurs mainly through two different modes. Initially, 
glutamate is released by exocytosis, a calcium-dependent 
mechanism, and then by reversal of the glutamate transport-
ers, a calcium-independent mechanism (Nicholls et al. 1987; 
Reid et al. 2003; Kostandy 2012). Both ATP and glutamate 
are also released through hemichannels (Pedata et al. 2016). 
Independent of the mechanism of release, glutamate further 
depolarizes glutamate receptors-containing cells, creating a 
positive feedback (Verkhratsky and Shmigol 1996; De Flora 
et al. 1998). The depolarization also promotes the release 
of magnesium from NMDA receptors (Zeevalk and Nick-
las 1992), making them even more responsive to glutamate, 
and further intensifying the depolarization, by sodium and 
calcium influx. Calcium entry through NMDA receptors, 
VGCC and sodium–calcium exchangers can trigger sign-
aling pathways that promote cell death through apoptosis 
(Figs. 1 and 2). Caspase-8 and calpains mediate BH3-inter-
acting domain death agonist cleavage, which translocates 
into mitochondria, where it interacts with another set of pro-
apoptotic proteins, like Bax, Bak, and Bad. This signaling 
promotes changes in mitochondrial permeability, triggering 
the release of mitochondrial proteins like cytochrome c (Cyt 
C), contributing to apoptosome formation through interac-
tion with apoptotic protease activating factor 1 (Apaf-1) 

Fig. 1  Deleterious effects of ischemia on presynaptic and postsynap-
tic neurons. The interruption or reduction of blood flow is associated 
with the decrease of  O2 levels and nutrient supply. Neurons respond 
to these effects by decreasing aerobic glycolysis, while increasing 
anaerobic glycolytic process, leading to the accumulation of lactate 
and to a pH reduction. As ATP levels decrease (1 and I), the failure 
of  Na+/K+/ATP pumps may occur (2 and II), which cause electrolyte 
imbalance (3 and III), depolarization and opening of  Ca2+ voltage-
dependent membrane channels (4 and IV). In the presynaptic neu-
ron, these alterations increase neurotransmitter release, especially 
glutamate (5). The reversal of EAAT transporters contributes to the 
increase in glutamate availability in the synaptic cleft as well (6). 
ATP deficiency also impacts neurons by generating reactive oxygen/

nitrogen species (e.g., superoxide and peroxynitrite). The depolariza-
tion mediated by intracellular sodium increase (III) stimulates volt-
age-gated  Ca2+ channel (IV). Intracellular  Ca2+ level is also elevated 
through the reversal of  Na+/Ca2+ exchanger (V).  Ca2+ overload also 
affects the postsynaptic neuron as a result of NMDA receptor hyper-
activation (VI), triggering glutamate excitotoxicity. Thus, intracellular 
 Ca2+ accumulation leads to the activation of different death pathways 
such as the one mediated by NOS, Calpain, Caspase, and phospholi-
pase A2 (PLA2). It is important to note that other pathways contribut-
ing to cell death are not described in the scheme for summarization 
purposes. For the clarity of the scheme Bax/Bad are show in mito-
chondria matrix
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(Orrenius et al. 2015; Datta et al. 2020). The mechanism 
leads to effector caspase activation (e.g., caspase 3), lead-
ing to protein cleavage and DNA fragmentation, a hallmark 
of apoptosis (Fig. 1). Briefly, other apoptotic pathways are 
also provoked by ischemia, such as activation of death recep-
tors by molecules, like tumor necrosis factor-alpha (TNF-
α) and first apoptosis signal ligand (FasL). These induce 
apoptosis through the activation of procaspase-8, leading to 
executioner caspase-3 cleavage, which triggers cell signaling 
involving p53 translocation to nucleus and induces transcrip-
tion of pro-apoptotic genes like Bax and Puma (Datta et al. 
2020).

Oxidative Stress

Oxidative stress is another hallmark of an event of ischemia/
reperfusion. Data suggest that reactive oxidative species 
(ROS) production begins at early reperfusion (Selakovic 
et al. 2011; Nakano et al. 2017; Godinho et al. 2018; Kapoor 
et al. 2019) (Fig. 2), when ATP is hydrolyzed to hypoxan-
thine, and ultimately converted to uric acid and superoxide 
ions in a calpain-dependent way. Superoxide ions can form 
hydroxyl radicals by Harber–Weiss reaction or interact with 
nitric oxide, induced by NMDA receptor activation during 

ischemia, generating peroxynitrite and nitrosyl radicals 
(Chan 1996; Love 1999; Osborne et al. 2004; Kostandy 
2012). Furthermore, calcium interference on mitochondrial 
function causes an accumulation of free electrons, which 
will be accepted by the oxygen in the early phase of rep-
erfusion, generating superoxide anions (Won et al. 2002). 
Regardless of the mechanism in which oxidative stress is 
generated, it triggers cell damage in the form of lipid peroxi-
dation, DNA fragmentation or protein degradation (Czerska 
et al. 2015).

Inflammatory Contribution

Inflammation-induced cell death after ischemia is also a 
well-established late-component of the pathology (Stevens 
et al. 2002; Fang et al. 2006; Weston et al. 2007; Kriz and 
Lalancette-Hébert 2009; Moxon-Emre and Schlichter 2010; 
Perego et al. 2011; Shrivastava et al. 2013; Kawabori and 
Yenari 2015; Cotrina et al. 2017; Zhang et al. 2019; Kapoor 
et al. 2019) (Fig. 2). Within the lesion site, the expression 
of chemokines and adhesion molecules increases, recruiting 
immune cells from the bloodstream (e.g., T cells and mac-
rophages). Local microglia are activated and secrete inflam-
matory mediators that can potentially worsen the tissue 

Fig. 2  Temporal profile of glutamate release/excitotoxicity (green), 
oxidative stress (blue), inflammation (orange), and cell death (pur-
ple) after ischemia induction. Glutamate release begins a few min-
utes after the onset of ischemia, reaching a peak within an hour if 
the noxious event lasts for that long. Extracellular glutamate content 
gradually decreases as soon as reperfusion takes place, and the time 
to restore basal levels is related to the severity of ischemia. Excito-
toxic and necrotic cell death occurs rapidly at the ischemic core but 
programmed cell death and infarct volume are still ongoing for some 
days until it is not detectable anymore in weeks. At the onset of rep-
erfusion, with the reestablishment of oxygen supply, reactive oxy-
gen species production dramatically increases, reaching a peak close 
to 24 h after ischemia, when it starts to decline. Inflammation is the 

latest event, with microglial and macrophage activation, adhesion 
molecules expression, neutrophil infiltration, astroglial response, and 
cytokine release taking place within some hours after ischemia. Since 
inflammation is a multifactorial process, different phenomena occur 
in maximal intensity in a larger time window, with some events still 
rising up to 7 days, decreasing thereafter. The curves for non-treated 
conditions were based on data that explore the temporal pattern of 
mentioned parameters in the same study. The effect of adenosinergic 
intervention was based on data from studies mentioned throughout 
the text that explored at least one of the illustrated events in ischemia 
and demonstrated protective effects at one or more of the time periods 
shown
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damage in late phases of ischemia/reperfusion, increasing 
infarct size. TNF-α and interleukin 1 beta (IL-1β), impor-
tant inflammatory mediators, are increased within ischemic 
lesion regions, contributing to cell death in the brain and ret-
ina. Corroborating these data, blockade of these inflamma-
tory mediators reduces the magnitude of the damage (Stoll 
et al. 2002; Osborne et al. 2004; Kawabori and Yenari 2015).

Role of Adenosine in Ischemic Conditions

Adenosine is a nucleoside that functions as a neuromodula-
tor in the CNS, regulating the release of neurotransmitters, 
synaptic plasticity, sleep–wake cycle, and cell death (Sheth 
et al. 2014). Adenosine acts through four types of G-protein-
coupled receptors already cloned and classified into  A1,  A2A, 
 A2B, and  A3. The  A1 and  A3 receptors are classically coupled 
to Gi/o protein, inhibiting AC activity and the production of 
cAMP (Fig. 3a). On the other hand,  A2A and  A2B receptors 
are classically coupled to Gs/olf protein, activating AC and 
increasing cAMP levels, which will, in turn, act on a series 
of effector proteins (Sheth et al. 2014).

Data from different experimental approaches may raise 
doubts concerning adenosine affinity for its receptors. In the 
most common view,  A1 and  A2A are considered high-affinity 

receptors and  A2B and  A3 are low-affinity receptors (Beuk-
ers et al. 2000; Effendi et al. 2020; De Filippo et al. 2020). 
Indeed, the observation that adenosine could have high or 
low affinity for  A2 receptors led to the distinction of  A2A 
(high affinity) and  A2B (low affinity) receptors (Bruns et al. 
1986). However, Fredholm and colleagues (Fredholm et al. 
2011; Fredholm 2014) have reported the difficulty in meas-
uring adenosine affinity and pointed out that a reliable 
method to estimate this information is to assess the potency 
of each receptor. This way,  A1,  A2A, and  A3 might be equipo-
tent, while  A2B is supposed to require higher concentrations 
of adenosine to elicit the same response (Fredholm 2014). 
Interestingly, high amounts of adenosine are only released in 
pathological conditions, such as hypoxia, which also causes 
 A2B receptors upregulation (Vecchio et al. 2019).

Many studies in the literature describe the increase in 
extracellular adenosine availability during an ischemic event 
(Pedata et al. 1993; Frenguelli et al. 2007; Melani et al. 
2012; Chu et al. 2013). The transient release of adenosine 
also increases during the period of cerebral ischemia and 
remains elevated during the reperfusion process (Ganesana 
and Jill Venton 2018). At the beginning of ischemia, adeno-
sine arises from the hydrolysis of the released ATP and, 
later, cells release adenosine through their nucleoside trans-
porters (Melani et al. 2012). Moreover, ischemia increases 

Fig. 3  Intracellular pathways coupled to adenosine receptors and 
CNS distribution. a There are four types of adenosine receptors 
named  A1,  A2A,  A2B, and  A3. The  A1 and  A3 receptors activate Gi/o 
protein, while  A2A and  A2B receptors are coupled to Gs/olf pro-
tein inhibiting and stimulating, respectively, adenylyl cyclase. Thus, 
adenosine receptors regulate cAMP levels, which impacts on protein 
kinase A (PKA) and exchange protein directly activated by cAMP 
(Epac) activity. A series of other effector proteins may also be modu-
lated. Moreover, adenosine receptors can stimulate the phospholi-
pase C (PLC) pathway.  A1 receptors regulate PLC via beta/gamma 
complex (Biber et al. 1997; Dickenson and Hill 1998), whereas  A2A 
receptors act through Gq protein (Ribeiro et al. 2016; Socodato et al. 

2011). Both  A2B and  A3 receptors can also stimulate PLC (Abbrac-
chio et al. 1995; Kohno et al. 1996; Pilitsis and Kimelberg 1998). b 
The distribution of adenosine receptors varies dramatically within the 
CNS. High densities of  A1 receptors are expressed in the cortex, hip-
pocampus, and cerebellum, while  A2A receptors are more abundant 
in the striatum and olfactory bulb. In contrast,  A3 and  A2B receptors 
are diffusely distributed in all brain regions in smaller amounts when 
compared to  A1 and  A2A receptors (Sheth et al. 2014).  A1,  A2A,  A2B, 
and  A3 receptors are also found in retinal cells, a structure that is part 
of the CNS, of different animals (Dos Santos-Rodrigues et al. 2015; 
Brito et al. 2016; Grillo et al. 2019; Portugal et al. 2021)
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the expression of ecto-5´nucleotidase (CD73) in astrocytes, 
and induces its expression in microglia, enhancing extra-
cellular adenosine formation (Braun et al. 1997). Within 
minutes, the concentration of adenosine in the extracellular 
medium reaches 1 mM, high enough to activate all P1-type 
receptors (adenosine receptors) (Melani et al. 2012), which 
are abundantly expressed in the CNS (Fig. 3b).

Interestingly, increased adenosine levels reduce neuronal 
damage and decrease the infarct area in rodent models of 
ischemia (Deleo et al. 1988; Dux et al. 1990; Lin and Phillis 
1992; Mori et al. 1992; Park and Rudolphi 1994; Gidday 
et al. 1995; Matsumoto et al. 1996; Miller et al. 1996; Jiang 
et al. 1997; Newman et al. 1998; Tatlisumak et al. 1998; 
Kitagawa et al. 2002). Treatment with a daily dose of exog-
enous adenosine, initiated 24 h after cerebral ischemia and 
maintained for 7 days, contributes to decreased cell death 
and sensorimotor functional recovery in the CA1 area of 
hippocampus of rats (Seydyousefi et al. 2019). Accordingly, 
the knockout (KO) for ecto-5′nucleotidase (CD73) shows 
increase in ischemic damage (Petrovic-Djergovic et  al. 
2012). The signaling involved in adenosine protection in 
HI is still unclear, but the anti-apoptotic effect of adeno-
sine in human umbilical vein endothelial cells (HUVECs) 
is reduced by the blockade of MAP kinase pathway (MEK/
ERK1/2), nitric oxide synthase (NOS), and protein kinase A 
(PKA) (Feliu et al. 2019). Moreover, adenosinergic agents 
also represent a potential pathway for neuroprotection in 
immature neurons (Shalak and Perlman 2004; Perlman 
2006).

Protective Role of Adenosine Through  A1 Receptor 
in Ischemia

The activation of  A1 receptors has been correlated with 
protective effects in ischemic situations both in mature and 
immature CNS (Melani et al. 2014b; Pedata et al. 2016) 
An important mechanism related to this effect refers to its 
capacity to regulate neuronal excitability by restricting 
calcium influx and, consequently, inhibiting the release 
of neurotransmitters, such as glutamate (Corradetti et al. 
1984; Dunwiddie 1984; Andiné et al. 1990; Goda et al. 
1998; Latini et al. 1999b; Sebastiäo et al. 2001; Tanaka et al. 
2001; Marcoli et al. 2003; Arrigoni et al. 2005; Batti and 
O’Connor 2010). In fact, it has been shown that ischemia-
induced synaptic depression is greatly inhibited in hip-
pocampal slices of  A1 KO mouse, reinforcing the idea of 
protection through modulation of synaptic activity (Johans-
son et al. 2001; Kawamura et al. 2019). Indeed, treatment 
with  A1 receptor agonists (CPA or CHA) reduces lactate 
dehydrogenase (LDH) release induced by HI in cultures 
of cerebellar granule (Logan and Sweeney 1997), and hip-
pocampal and cortex neurons (Daval and Nicolas 1994). In 
addition,  A1 receptors antagonist, DPCPX, could reverse 

this effect in granule cells (Logan and Sweeney 1997). A 
recent study has shown that the presence of CPA, an  A1 full 
agonist, or the partial agonists 2′-dCCPA and 3′-dCCPA, 
during the entire experimental procedure, in hippocampal 
slices, protects the neurons from oxygen glucose depriva-
tion (OGD)-induced irreversible depression and increases 
cell viability of SH-SY5Y human neuroblastoma cells in 
culture after OGD (Martire et al. 2019). The same protec-
tive profile was observed in vitro, using primary cultures of 
neurons prepared from turtle brain homogenates subjected to 
anoxic condition (Milton et al. 2007). In this case, treatment 
with the selective  A1 receptor agonist, CCPA, prevents cell 
death and anoxia-induced ROS production, but  A1 antago-
nist (DPCPX) exacerbates the injury (Milton et al. 2007).

The cell signaling involved in  A1 receptor protection 
against ischemic death is also an important research field. 
In primary cortical neurons in culture, the increase in cell 
viability by treatment with paeoniflorin, before and during 
OGD, occurs via  A1 receptor activation and depends on Akt 
and ERK1/2 phosphorylation (Zhong et al. 2015). On the 
other hand, there is evidence that incubation with a high con-
centration of an  A1 receptor agonist (500 nM CPA) induces 
neuronal damage in the CA1 region of hippocampal slices, 
which is prevented by DPCPX (Stockwell et al. 2016). The 
authors suggest a mechanism of adenosine-induced persis-
tent synaptic depression, which includes AMPA subunits 
internalization through dephosphorylation.

Similar effects are also found by using in vivo mod-
els of ischemia. In general, acute pre-treatment with  A1 
agonists preserves the morphology of neurons, spatial 
memory, and learning capacity; increases neuron survival 
and neurological scores; and reduces mortality in ger-
bils (Héron et al. 1994; Von Lubitz et al. 1994a, 1996). 
Accordingly, in young  A1 KO mice (P10), larger infarct 
area has been reported after unilateral HI (Winerdal et al. 
2016). Administration of  A1 agonist CCPA 24 h before 
middle cerebral artery occlusion (MCAO) protocol is also 
protective, reducing infarct area, TNF-α levels, and lipid 
peroxidation and increasing superoxide dismutase (SOD) 
and glutathione (GSH) levels (Hu et al. 2012). Administra-
tion of  A1 agonist CPA 1 h before ischemia also reduces 
lipid peroxidation when analyzed at 3 h and 3 days after 
ischemia (Sufianova et al. 2014). Atef et al. (2018) inves-
tigated the signaling activated by  A1 receptor in ischemia. 
The incubation of  A1 agonist CHA at the onset of reperfu-
sion drastically diminishes pyknotic nuclei in hippocam-
pal neurons induced by bilateral carotid occlusion. The 
receptor agonist promotes reduction of reactive microglia, 
glutamate, TNF-α, inducible NOS (iNOS), interleukin 6 
(IL-6), Thiobarbituric acid reactive substances (TBARS), 
c-fos, Cyt C, and caspase-3, all increased by ischemia. 
Meanwhile, it increases interleukin 10 (IL-10) and nuclear 
factor erythroid 2-related factor 2 (Nrf2) and elicits better 
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performances in behavior tasks. Ischemia also increases 
phospho-ERK1/2 and diacylglycerol levels but those 
were further increased by CHA, which also potentiates 
the reduction in cAMP promoted by ischemia (Atef et al. 
2018). A more recent study shows that pretreatment with 
 A1 agonist CCPA for 30 min reduces the brain infarction 
area after 90 min of MCAO, and this effect correlates to 
the increase in glycogen synthase kinase 3 beta (Gsk3b) 
phosphorylation (Geng et al. 2020). In another study, Cui 
et al. (2016) have shown that a blocker of dynamin-related 
protein 1 reduces stroke volume and improves neurologi-
cal score of mice submitted to MCAO, depending on  A1 
receptor, and involving increase in levels of extracellular 
adenosine through regulation of the ecto-5′ nucleotidase 
(CD39) expression in astrocytes via cAMP/PKA/cAMP-
response element binding protein (CREB) phosphoryla-
tion. The protection afforded by electroacupuncture, which 
increases adenosine levels and reduces infarct volume in 
a model of MCAO also depends on  A1 receptor (Dai et al. 
2017). Treatment with  A1 receptor agonists, soon after 
ischemia, is also effective in protecting neurons, improv-
ing neurological scores and reducing mortality (von Lubitz 
et al. 1988; von Lubitz and Marangos 1990). Accordingly, 
acute pre-treatment with  A1 antagonists CPX or 8-CPT 
significantly worsens the outcome and enhances neuronal 
destruction induced by global ischemia (Boissard et al. 
1992; Von Lubitz et al. 1994a; Phillis 1995; Olsson et al. 
2004).

However, while studies using an acute treatment with  A1 
receptor antagonists show aggravation in ischemic damage, 
chronic treatment, previous to ischemia, has a protective 
effect. Exposure to  A1 antagonist CPX—1 mg/kg, i.p. for 
15 days, up to 24 h before the ischemic event, reduces neu-
ronal damage (Von Lubitz et al. 1994a). Such effect could be 
attributed to the fact that prolonged inhibition of a receptor 
induces its upregulation, a common neurochemical plasticity 
response observed in the CNS that also applies to  A1 recep-
tor (Jacobson et al. 1996; Hettinger-Smith et al. 1996; Brito 
et al. 2012). Curiously, adult  A1 KO mice show no effect 
on cell death in hippocampus, cortex, and striatum after a 
12-min global ischemia followed by 4 days of reperfusion, 
raising the question if compensatory mechanisms could be 
active in animals lacking  A1 receptor, which predominantly 
seem to promote the survival of the CNS cells in ischemic 
conditions (Olsson et al. 2004).

Thus,  A1 receptor consists of an interesting target of 
studies in the context of ischemic damage. Its essential 
effect represented by the reduction of neuronal excitability 
has proven to be beneficial in mature and immature brain 
lesions. Despite that, it is important to highlight that chronic 
treatments with  A1 antagonists may trigger compensatory 
mechanisms as receptor upregulation, which may be relevant 
as a protective strategy.

The Modulatory Effect of  A2A Receptors in Ischemic 
Conditions

Classically,  A1 and  A2A adenosine receptors elicit opposite 
intracellular responses. Accordingly, many studies demon-
strate that  A2A receptor antagonism, as well as  A1 activation, 
is protective against ischemic damage.  A2A selective antago-
nist, administered just before ischemia, protects hippocampal 
neurons in a global prosencephalic ischemia model (Phillis 
1995; Von Lubitz et al. 1995). Similarly, treatment with 
an  A2A selective antagonist (ZM241385) before ischemia 
reduces neuronal damage in hippocampal cells and improves 
animal performance in Morris water maze (Higashi et al. 
2002). The beneficial effect provided by blockade of  A2A 
receptors in ischemic events is reinforced by studies showing 
that  A2A receptor KO protects from cerebral ischemic dam-
age (Chen et al. 1999; Gui et al. 2009). When administered 
after the ischemic event (which in fact has greater clinical 
relevance), an  A2A antagonist also has protective effects. 
The use of SCH58261 after the ischemic event reduces neu-
ronal damage in neonate and adult rats (Bona et al. 1997; 
Monopoli et al. 1998; Melani et al. 2003, 2006b). In new-
born piglets, the  A2A inhibition-induced protection involves 
an increase in  Na+/K+ ATPase pump activity, and prevention 
of the ischemia-induced phosphorylation of NMDA recep-
tor subunit GluN1 at ser897 and of dopamine- and cAMP-
regulated neuronal phosphoprotein (DARPP32) at thr34. 
The protection also includes the reduction in ischemia-
induced nitrative and oxidative stress (Yang et al. 2013). 
Mohamed and collaborators (Mohamed et al. 2016) have 
analyzed in more detail the intracellular pathways triggered 
by  A2A antagonism in ischemia. Intrahippocampal injec-
tions at the end of a 45-min ischemic event decrease pro-
tein levels of phospho-ERK (p-ERK), NFκB, TNF-α, IL-6, 
iNOS, caspase-3, Cyt C, p-CREB, and c-fos, all increased by 
ischemia/reperfusion (Mohamed et al. 2016). Moreover, the 
authors report a decrease in glutamate and TBARS, along-
side increases in IL-10 and nuclear Nrf2 with the antago-
nist treatment. However, exposure to  A2A receptor antago-
nist (CSC), 2 h after stroke onset, has no protective effect 
in lesion volume, which could be due to the time window 
of effectiveness or dose (Fronz et al. 2014). Furthermore, 
prolonged use of SCH58261, starting 5 min and twice/day 
after tMCAO, does not change infarct volume when ana-
lyzed 7 days later, suggesting a time window of apparent 
protection that remains to be fully understood (Melani et al. 
2015). Finally,  A2A receptor KO in younger (P7) rats inten-
sifies the damage, caused by the occlusion of the left com-
mon carotid, and the performance in behavioral tests, such as 
rotarod (Ådén et al. 2003), which raises the question whether 
the effect of  A2A receptor blockade depends on the maturity 
of the tissue and/or differentiation of specific features during 
development to achieve neuroprotection.
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To understand the role of adenosine  A2A receptor in 
ischemia-induced cell death, experiments with agonists have 
also been performed. In the gerbil,  A2A agonist (APEC), 
administered systemically and chronically for 13 days before 
the ischemic insult, has beneficial effects on the survival of 
hippocampal neurons and animals (Von Lubitz et al. 1995). 
Systemic administration of  A2A agonist ATL-146e or CGS 
21680, just before reperfusion onset, protects from motor 
dysfunction and cell viability in spinal cord ischemia–rep-
erfusion and infarct size, oxidative stress, and memory 
impairment in global cerebral ischemia, respectively (Reece 
et al. 2006; Grewal et al. 2019). The treatment with low 
doses (0.01–0.1 mg/kg i.p.) of this same agonist for seven 
days (and twice a day), after transient cerebral ischemia, 
decreases gliosis, the infarct area in the cortex, but not in 
the striatum, as well as the myelin disorganization in the 
striatum (Melani et al. 2014a). The possible explanation for 
the apparent contradiction (activation of  A2A receptor and 
protection) is the modulation of functions in non-neuronal 
cells-glial, endothelial, and immune cells that leads to sev-
eral benefic effects (described in the next topic).

The data show an important neuroprotective function trig-
gered by the inhibition/absence of  A2A receptors in neurons 
in different models of cerebral ischemia. Interestingly, in 
some cases, the protective action can also be achieved after 
ischemia, which makes  A2A receptor inhibition a promis-
ing tool in both prevention and treatment. In addition, the 
time frame of pharmacological intervention is crucial for 
the protective effect, as well as the period of development. 
In any case, the evidence mostly places the inhibition of 
 A2A receptors as a common denominator of neuroprotection.

Protective Mechanisms Through  A1 and  A2A 
Receptors Related to Glial and Other Cells

The protective effect of  A2A receptors inhibition can also 
be attributed to the regulation of synaptic transmission and 
glutamate release (Cunha et al. 1994; Latini et al. 1999a; 
Melani et al. 2003; Pugliese et al. 2009; Lopes et al. 2011; 
Maraula et al. 2013; Effendi et al. 2020). This effect seems 
to occur through modulation of  A1 receptor activity, at least 
in the hippocampus (Lopes et al. 2002). It is known that 
glial cells play an important role in the regulation of gluta-
mate availability and excitotoxicity. Interestingly, in astro-
cytes,  A2A receptors inhibit glutamate uptake by excitatory 
amino acid transporter (EAAT)-2 while stimulating EAAT-
2-independent release via PKA activation (Nishizaki et al. 
2002). Acute (30 min) or chronic (24 h) activation of the 
 A2A receptor with CGS 21680 reduces d-aspartate uptake 
in astrocyte cultures, probably by decrease of glutamate 
transporters EAAT1 and EAAT2 mRNA expression (Matos 
et al. 2012). Cultures of rat astrocytes subjected to OGD for 
150 min show great cell death after 24 h of reoxygenation. 

Death is inhibited by guanosine through a mechanism that 
depends on the activation of the  A1 receptor and the MAPK 
and protein kinase C (PKC) pathway. Activation of these 
pathways prevents the OGD-promoted reduction of EAAT2 
glutamate transporters in the membrane, restoring glutamate 
uptake and, consequently, restricting cell death (Dal-Cim 
et al. 2019). This evidence is in agreement with the increase 
in the amount of EAAT2 by overexpression of  A1 receptors 
in astrocytes (Wu et al. 2011; Hou et al. 2020). Recently, 
it has been demonstrated in mouse astrocyte cultures sub-
jected to OGD that the formation of  A1–A2A heterodimers 
reduces the expression of EAAT2 through the transcription 
factor YY1 and repression of PPARγ transcription. Interest-
ingly, the effect is blocked by the pharmacological activa-
tion or inhibition of the  A1 and  A2A receptor, respectively 
(Hou et al. 2020). Thus,  A2A receptors activation reduces 
the ability of glial cells to decrease glutamate availability, 
which could be harmful in ischemic events. In agreement, 
there is an increase in the expression of EAAT2 in astrocytes 
genetically devoid of  A2A receptors (Matos et al. 2015; Hou 
et al. 2020). In addition,  A2A receptor inhibition reduces 
reactive astrogliosis in slices of hippocampal rats submitted 
to OGD (Pugliese et al. 2009). It remains to be evaluated 
whether reactive astrogliosis depends on the modulation of 
glutamate transporters. New evidence points out that the 
astrocytic Lrp4 protein contributes to cell death induced by 
photothrombosis, ischemic stroke, and OGD, since Lrp4 KO 
animals exhibit lower cell death when compared to controls 
(Ye et al. 2018). The authors demonstrated that the absence 
of the protein reduces reactive astrogliosis and increases 
the release of ATP and astrocytic adenosine in ischemic 
conditions, which contributes to the reduction of neuronal 
death through activation of the P2X7 and  A2A receptors (Ye 
et al. 2018). In fact, astrocytes are a considerable source of 
adenosine release in ischemic conditions (Martín et al. 2007; 
Takahashi et al. 2010).

Ischemia, ATP and glutamate per se can also induce micro-
glial activation (Pforte et al. 2005; Davalos et al. 2005; Melani 
et al. 2006a; Lai et al. 2011). Furthermore,  A2A receptor, stimu-
lated by adenosine released during ischemia, activates microglia 
(Orr et al. 2009). Reactive microglia releases high concentra-
tions of glutamate (Takeuchi et al. 2006; Socodato et al. 2015) 
and ATP (Imura et al. 2013), contributing to a positive feed-
back loop of microglial activation and enhancing excitotoxicity. 
Accordingly, glutamate release after ischemia can be attenu-
ated by treatment with  A2A antagonist (SCH 58261) in vivo 
and in rat and human cortex slices (Marcoli et al. 2003, 2004; 
Melani et al. 2003). Furthermore,  A2A antagonism prevents the 
ischemia-promoted increase in p-p38 and TNF-α in microglia 
and in p-JNK in oligodendrocytes, which would lead to a dis-
organization of myelin (Melani et al. 2006b, 2009; Mohamed 
et al. 2016). Another interesting point is that NGF plays a neu-
roprotective role in cerebral ischemia. Astrocytes, together with 



Cellular and Molecular Neurobiology 

1 3

microglia, are the main responsible for NGF secretion, which is 
stimulated by  A1 and  A2A receptors, respectively (Heese et al. 
1997; Ciccarelli et al. 1999; Liu et al. 2019). The relation of 
NGF production/secretion and  A1 or  A2A receptors in ischemic 
events is still unclear. The activation of  A2A receptor is also 
related to the production and release of neurotrophic factors, 
such as glial cell-derived neurotrophic factor (GDNF) and brain-
derived neurotrophic factor (BDNF) (Gomes et al. 2006, 2013; 
Tebano et al. 2008; Sebastião and Ribeiro 2009; Jeon et al. 2011; 
Vaz et al. 2015), which could help maintain/restore function and 
neuronal integrity. However, the release of these neurotrophic 
factors may not compensate for several other malefic alterations 
triggered by  A2A receptor activation during ischemia. Activa-
tion of  A2A receptor in microglial cells also induces cyclooxyge-
nase 2 (COX-2) content, and prostaglandin E2 release (Fiebich 
et al. 1996), nuclear translocation of hypoxia inducible factor 
(HIF-1α) and transcription activation of vascular endothelial 
growth factor (VEGF) and iNOS (Merighi et al. 2015).

Besides glial cells, other cell types can contribute to pro-
tection induced by  A2A inhibition. The specific inactivation 
of  A2A receptors in endothelial cells have recently shown to 
be beneficial in a model of embolic MCAO. The cell-spe-
cific knockout decreases infarct volume and improves neu-
rological outcome (Zhou et al. 2019). Furthermore, the KO 
shows reduced protein levels of adhesion molecules, such 
as VCAM and ICAM, neutrophil and monocytes infiltra-
tion, reduced blood–brain barrier leakage, and consequently 
reduced edema. The mechanism seems to involve less acti-
vation of the NLRP3 inflammasome in the endothelial KO. 
Taken together, these data indicate that a plethora of changes 
triggered by  A2A receptor inhibition during or soon after 
ischemia result in CNS protection.

Furthermore, the best window for treatment with  A2A 
receptor inhibitors, and therefore, the outcome efficiency 
after ischemia, can be challenging due to the action in non-
neuronal cells. The activation of  A2A receptor in immune 
cells could contribute to the protection after ischemia/rep-
erfusion, as it reduces infiltration of those cells into the 
ischemic site, and release of inflammation signal, which 
aggravates injury (Haskó et al. 2008; Antonioli et al. 2014; 
Melani et al. 2014a). Studies indicate that adenosine, by 
activating  A2A,  A2B, and  A3 receptors, restrains the pro-
duction of macrophage pro-inflammatory mediators, such 
as TNFα, IL-6, IL-12, NO, and macrophage inflammatory 
protein (MIP)-1α (Antonioli et al. 2019). In vitro, human 
dermal microvascular endothelial cells (HDMECs) and rab-
bit DMECs show less apoptotic levels after hypoxia when 
treated with  A2A agonist (CGS-21680) before the onset of 
hypoxia and again before reoxygenation (Cao et al. 2017, 
2019). Thus, these results show that  A2A receptors may also 
account for protection by preserving the vascular integrity 
and can hinder the best protocol of treatment with the  A2A 
inhibitors.

Beneficial Effects of  A2B Receptors in Ischemia

The role of  A2B receptors has been less explored but, inter-
estingly, due to the low affinity for adenosine and the relative 
paucity in the brain,  A2B receptors appear to be activated, and 
may be biologically operative, mainly under noxious situations, 
such as hypoxic or ischemic conditions, when adenosine levels 
increase (Koeppen et al. 2011; Popoli and Pepponi 2012). In the 
stratum radiatum of the CA1, the  A2B receptor is found in non-
astrocytic cells, and the number and labelling density increase 
after cerebral ischemic preconditioning (Zhou et al. 2004). In 
 A2B KO mice, basal levels of TNF-α and adhesion molecules, 
such as ICAM-1, P-selectin, and E-selectin, are increased (Yang 
et al. 2006). In addition,  A2B receptors demonstrate an important 
function in endothelial cells to control vascular leakage and neu-
trophil infiltration induced by hypoxia in several organs (Eckle 
et al. 2008). However, in the brain, although the genetic absence 
of  A2B receptors in bone marrow increases vascular permeabil-
ity,  A2B receptor agonist or antagonist treatment has no effect 
(Eckle et al. 2008). Additionally, hypoxia upregulates  A2B recep-
tors, together with HIF-1α and IL-6, in primary microglial cells 
(Merighi et al. 2017). Interestingly, the role of  A2B receptors in 
tissue-type plasminogen activator (tPA) treatment, one of the 
frontlines to treat stroke in humans, was recently evaluated. An 
inconvenient side effect of tissue-type plasminogen activator 
is the possibility to induce hemorrhagic transformation. Treat-
ment with an  A2B agonist (BAY 60-6583) after ischemia reduces 
infarct volume in the presence or not of tPA and counteracts the 
blood–brain barrier damage induced by tPA (Li et al. 2017). 
These data could open the possibility to include  A2B agonists as 
adjuvants in tPA treatment after stroke.

A2B receptors were also studied in the context of protec-
tion mediated by propofol in ischemia. This anesthetic could 
reduce microglial proliferation, and the levels of nitric oxide, 
TNF-α, and IL-1β, all increased by transient MCAO. An  A2B 
antagonist (MRS agar) blocks the beneficial effects of propo-
fol, suggesting an interesting protective effect of propofol 
in ischemia through  A2B activation (Yu et al. 2019). Doco-
sahexaenoic acid protects hippocampal slices from OGD-
promoted cell death through  A2B receptors activation (Molz 
et al. 2015). In the same model,  A2B antagonists (MRS1754 
or PSB603) delay OGD-induced anoxic depolarization, 
restoring field excitatory postsynaptic potentials (fEPSPs), 
decreasing the apoptotic marker cytochrome c, and improv-
ing neuronal survival (Fusco et al. 2018).

Therefore, different from  A1 and  A2A receptors, which 
are widely distributed in the CNS,  A2B receptors may play 
a restricted role in adverse conditions, such as ischemia. As 
a consequence,  A2B antagonists may elicit the protection of 
ischemic neurons. Moreover, as  A2B modulation may impact 
blood circulation, pharmacological strategies based on this 
receptor should benefit the scheme of pharmacological inter-
vention in cases of stroke.
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The Action of  A3 Receptors in Ischemic Events

The  A3 receptors also appear to be involved in the process of cell 
survival and death, depending on the level of receptor activation 
and pathophysiological conditions, such as the ischemic pro-
cess (Abbracchio and Cattabeni 1999; Borea et al. 2009). Pre-
treatment with a selective  A3 agonist (Cl-IB-MECA) increases 
cell viability of primary cortical cultures exposed to OGD, as 
well as attenuates ischemia-induced TUNEL labeling and cer-
ebral infarct volume, and increases locomotor activity (Chen 
et al. 2006). Treatment with IB-MECA after ischemia reduces 
infarct size, reactive gliosis, and microglia infiltration when 
evaluated 7 days later (Von Lubitz et al. 2001). The reduction 
of microglial infiltration by IB-MECA after ischemic events may 
depend on direct inhibition of chemotaxis and down-regulation 
of Rho GTPases (Choi et al. 2011). In agreement, KO for the  A3 
receptor exhibits greater ischemic (Chen et al. 2006) or hypoxic 
damage (Fedorova et al. 2003). In vitro studies with hippocam-
pal slices, prepared from young rats (P12–P16), submitted to 
15-min OGD, result in depression of fEPSPs that was persistent 
only at CA3 region, but not at CA1, and application of  A3 recep-
tor antagonist (VUF5574 or MRS1191) prevented the persistent 
depression (Dennis et al. 2011). The authors suggest that  A3 acti-
vation can partially contribute to OGD-induced AMPA recep-
tors internalization in the CA3 region, potentially protecting it 
from following excitotoxicity. In hippocampus slices from adult 
rats,  A3 antagonists prevent sustained depression induced by 
OGD at CA1 region (Pugliese et al. 2007). Moreover, in a model 
of global ischemia of the anterior brain in the gerbil, chronic 
administration of IB-MECA (100 μg/kg i.p. daily for 10 days 
before ischemia), reduces neuron loss in the hippocampus (Von 
Lubitz et al. 1994b). In human astrocytoma cells, low concen-
tration of Cl-IB-MECA reduces hypoxia-induced apoptosis, as 
well as cell death is exacerbated in  A3 KO astrocytes (Björklund 
et al. 2008).

Although, high concentrations of adenosine or 2-Cl-IB-
MECA seem to be toxic to oligodendrocyte cultures pre-
pared from optic nerve, by causing ROS production, mito-
chondrial membrane depolarization and caspase dependent 
cell death, which are blocked by MRS 1220, an  A3 receptor 
antagonist (González-Fernández et al. 2014). Furthermore, 
MRS 1220 reduces OGD-induced cell death in isolated optic 
nerve, also restoring myelin basic protein levels.

The evidence strengthens the idea that  A3 receptor activation 
triggers a protective mechanism in ischemic events, similar to  A1 
receptor stimulation. The neuroprotective effect seems to depend 
directly on the activation of the receptor in neuronal cells; how-
ever, an indirect effect via other cell types cannot be ruled out.

Role of Adenosine Receptors in Ischemic Retina

In the mature retina,  A2A receptor inhibition or  A1 receptor 
activation has also beneficial effects in ischemic conditions. 

The increased availability of adenosine, using an adenosine 
deaminase blocker, or an  A1 receptor agonist, both applied 
just before ischemia, preserves the tissue integrity, and the 
electrical activity impaired by ischemia (Larsen and Osborne 
1996). Interestingly,  A1 receptors blockade also impairs the 
histological protective effect provided retinal ischemic pre-
conditioning (Sakamoto et al., 2004). In addition, the  A2A 
inhibition protects both structure and tissue functionality 
after ischemic events of 5, 30, or 60 min, whereas  A1 block-
ade does not exert the same effect (Li et al. 1999). In a model 
of ischemia induced by increased IOP and reperfusion for 
7 days, the  A2A antagonist KW6002 also reduces the inflam-
matory response and the apoptotic levels in the rat retina 
(Boia et al. 2017). In the same model, an  A2A antagonist 
(SCH 58261) reduces microglial reactivity, IL-1β levels, and 
TUNEL staining (Madeira et al. 2016a). Intriguingly, selec-
tive  A2A activation before ischemia alleviates the thinning 
of the inner retina (Konno et al. 2006).

In both in vitro and in vivo models of the retina,  A3 recep-
tor selective agonist provides protection against excitotoxic 
stimuli and ischemia–reperfusion injury, increasing the sur-
vival of retinal cells, including ganglion cells (Galvao et al. 
2015). This protective effect could occur through receptor 
desensitization (Pugliese et al. 2007).

Caffeine as a Possible Neuroprotector 
in Ischemia

Caffeine and Coffee Consumption

Caffeine (1,3,7-trimethylxanthine) is an alkaloid that 
belongs to the class of xanthines, being the most consumed 
psychostimulant in the world. The worldwide consumption 
of caffeine occurs through different sources, such as coffee, 
teas, chocolates, soft drinks, energy drinks, and medicines 
(Heckman et al. 2010; Yoon and Danesh-Meyer 2019). How-
ever, the main source of this stimulant in Western society 
is through the consumption of coffee, where its concentra-
tion can vary between 40 to 180 mg/150 mL. In Western 
countries, the daily intake of caffeine reaches 70–80% of 
the population (Heckman et al. 2010; Mitchell et al. 2014), 
increases with age, and the consumption, considering all 
sources, can vary from 135 to 213 mg/day (Drewnowski and 
Rehm 2016). Brazil is the second largest consumer of coffee 
in the world, and the consumption of caffeine by adults, from 
all sources, can reach 300 mg/day (Heckman et al. 2010; 
Sousa and Da Costa 2015).

Molecular Mechanisms and Caffeine Metabolism

The biological effects triggered by caffeine concentration 
reached by average daily consumption are related to its 
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antagonism of adenosine receptors, more specifically  A1 
and  A2A receptors (Rivera-Oliver and Díaz-Ríos 2014). 
Besides adenosine, other molecular targets can be modu-
lated by caffeine only at high/toxic concentrations, which 
are unlikely to be reached in humans by any form of normal 
use of caffeine-containing beverages. Comparing to the con-
centration range that selectively inhibits adenosine recep-
tors, caffeine can inhibit phosphodiesterase (in a ten times 
higher concentration),  GABAA receptors (40 times higher), 
and mobilize calcium from intracellular stores (100 times 
higher) probably by its action on ryanodine receptors (Fred-
holm 1979; Fredholm et al. 1999; Gupta et al. 2018). Thus, 
the vast majority of the effects described in animal models 
and human studies using caffeine are exclusively related to 
inhibition of adenosine receptors (see Box 1 for information 
about caffeine dose translation).

Box 1: How to Translate Caffeine Dose 
from Animal Models to Humans

Several studies have been researching the role of caffeine 
in different pathologies using animal models. Concerning 
that, it is important to bear in mind that caffeine dose can-
not be directly compared between animals and humans 
because of the difference in the body surface area (BSA). 
Reagan-Shaw et al. (2007) call the attention to the usage 
of appropriate normalizations to extrapolate animal dose 
to humans. The Food and Drug Administration (FDA) 
recommends the usage of a factor (Km) to convert animal 
dose to human equivalent dose (HED) using the follow-
ing formula:

For example, the treatment of a mouse with 30 mg/
kg of caffeine corresponds to a HED of 2.43 mg/kg, 
since the values of Km for adult human (with 60 kg) 
and mouse (Table 1) are, respectively, 37 and 3 (Rea-
gan-Shaw et al. 2007). Therefore, for an adult with 
60 kg it corresponds to 146 mg of caffeine, which is a 
low dose for humans. However, the Km for rats is 6, so 
a 30 mg/kg treatment corresponds to a HED of 4.86 or 
292 mg of caffeine, a higher HED. The HED obtained 
in the rat, but not in the mouse example is in the range 
considered, by The American College of Obstetricians 
and Gynecologists, unsafe for pregnant women. There-
fore, researchers must be careful about which dose they 
should choose depending on the consumption range 
they may plan to stimulate in humans.

Human equivalent dose (mg∕kg)

= animal dose(mg∕kg)multiplied by
animal Km

human Km.

After ingestion, caffeine is rapidly and completely 
(99%) absorbed by the gastrointestinal tract in humans, 
reaching a plasma peak between 15 and 120 min. For 
doses of 5–8 mg/kg, the plasma caffeine concentration 
can vary between 8 and 10 mg/L (Arnaud 1993). Due 
to its hydrophobic profile, caffeine is able to cross all 
biological barriers, such as hemato-intestinal, hemato-
placental, blood–brain barrier, and blood–retinal barrier 
(Arnaud 1993; Cappelletti et al. 2015). The half-life 
of caffeine in humans varies between 2.5 and 4.5 h for 
doses less than 10 mg/kg (Fredholm et al. 1999). Caf-
feine metabolism occurs in the liver and is carried out 
mainly by the cytochrome P450 1A2 enzyme system 
(CYP1A2), even though xanthine oxidase and acetyl-
transferase 2 (NAT-2) also contribute to this function 
(Nehlig 2018). However, the functionality of CYP1A2 
is reduced in different animals, neonates and premature 
babies, which dramatically increases the half-life of caf-
feine in these individuals (Arnaud 1993; Fredholm et al. 
1999; Nehlig 2018). Thus, metabolic rate is another 
important factor that influences caffeine effect in animal 
models. For doses lower than 10 mg/kg, the half-life 
of caffeine ranges from 0.7 to 1.2 h in rats and mice, 
1–4 h in rabbits, 3–5 h in monkeys (Bonati et al. 1984; 
Arnaud 1993; Xu et al. 2010).

The metabolism of caffeine that occurs in the liver 
produces, among other components, three dimethyl-
xanthines: paraxanthine, theobromine, and theophyl-
line. Among the three, paraxanthine is produced in a 
greater proportion (84%), followed by theobromine 
(12%) and theophylline (4%) (Cappelletti et al. 2015). 
These metabolites have physiological actions (Ribeiro 
and Sebastião 2010). Interestingly, it has been observed 
that after chronic caffeine consumption, the concentra-
tion of theophylline in the brain of mice seems to remain 
higher than their own peripheral concentrations, higher 
than the concentrations of other metabolites and higher 
than the concentration of caffeine itself. These findings 
suggest that caffeine metabolism in the CNS may be dif-
ferent (Johansson et al. 1996), which could impact the 
outcome of treatment with caffeine. Therefore, more stud-
ies aiming to understand the role of these metabolites in 
ischemic events could help reach an efficient protocol of 
therapy.

Implications of Caffeine Exposure During 
Development

Caffeine and its metabolites can accumulate during preg-
nancy since clearance and excretion are reduced due to 
decreased CYP1A2 activity (Stavric 1988; Nehlig 2018). 
The ability of caffeine to freely cross the placental barrier, 
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coupled to the fact that its metabolism is immature dur-
ing embryonic and postnatal development, can lead to 
a high concentration of this compound in the body of 
these fetuses/neonates and compromise the correct devel-
opment of different systems. In fact, there are a number 
of studies that relate the administration of high doses of 
caffeine during embryonic development in animal models 
with teratogenic effects (Tye et al. 1993; Sahir et al. 2000; 
Momoi et al. 2008; Li et al. 2012; Ma et al. 2012, 2014; 
Tan et al. 2012; Xu et al. 2012). In humans, epidemio-
logical surveys have shown an increased risk of low birth 
weight (Momoi et al. 2008; Sengpiel et al. 2013), fetal 
growth restriction (Klebanoff et al. 2002; Bracken et al. 
2003; Bakker et al. 2010) and miscarriage as caffeine 
intake increases. In some cases even the consumption of 
one cup of coffee (100 mg caffeine) per day increases the 
risk (Konje and Cade 2008; Weng et al. 2008; Bakker 
et al. 2010; Chen et al. 2014; Li et al. 2015; Rhee et al. 
2015). However, The American College of Obstetricians 
and Gynecologists states that less than 200 mg per day of 
caffeine consumption does not appear to be a major con-
tributing factor in miscarriage or preterm birth, whereas 
for fetal growth restriction it is undetermined (Counseling 
2019). In addition, caffeine is used in the treatment of 
apnea of prematurity, which decreases the risks of patent 
ductus arteriosus, brain injury, retinopathy of prematu-
rity (ROP), and postnatal steroid use (Abdel-Hady 2015; 
Kua and Lee 2017; Kumar and Lipshultz 2019). Never-
theless, the best therapeutic window, dose, and duration 
of therapy remain to be determined (Abdel-Hady 2015; 
Kumar and Lipshultz 2019).

Apnea of Prematurity and Caffeine

Clinical Aspects of the Apnea of Prematurity

An apneic episode is characterized by respiratory failure 
that lasts more than fifteen seconds and it is accompanied 
by hypoxia, bradycardia, cyanosis, or pallor. It is one of 
the most common diagnoses in the NICU and requests 
the attention of the medical community. Its occurrence 
is inversely proportional to gestational age, and it can 
be classified as central, obstructive, or mixed (Martin 
and Wilson 2012; Eichenwald 2016). The understand-
ing of the pathogenesis of the apnea of prematurity has 
revealed central (e.g., decreased central chemosensitivity, 
hypoxic ventilatory depression) and peripheral (e.g., dys-
regulation of carotid body activity, excessive bradycardic 
response) mechanisms involved in these events and it has 
guided the search for therapeutic interventions not only 
to increase survival but also to avoid long-term conse-
quences that may include neurodevelopmental disorders 
(Martin and Wilson 2012). Usually, these children request 

air supply to survive, and exposure to higher oxygen ten-
sion can lead to ROP. In premature children, the exposure 
to high oxygen tension, compared to in uterus conditions, 
inhibits retinal normal vessel growth, creating avascular/
ischemic zones (Schmidt et al. 2007; Liegl et al. 2016; 
Hartnett 2017). As the newborn develops, tissue meta-
bolic demand increases, triggering signaling pathways to 
promote neovascularization, and consequently, formation 
of disorganized and nonfunctional vessels. ROP is a lead-
ing cause of infant blindness worldwide (Gilbert 2008; 
Blencowe et al. 2013; Quimson 2015; Bashinsky 2017), 
and the treatment for the disease includes photocoagula-
tion and use of VEGF inhibitors (Liegl et al. 2016).

Therapeutic Agents and Caffeine Function

The procedures to treat apnea include options, such as 
nasal continuous positive airway pressure (NCPAP), 
which reduces frequency and severity of apnea by 
decreasing the risk of obstructive apnea; blood transfu-
sion in the attempt to reduce apnea by increasing respira-
tory drive, oxygen carrying capacity, and tissue oxygena-
tion, a short-lived method linked to anemia occurrence; 
and the xanthine therapy, which is the standard method, 
normally by using caffeine citrate due to its longer half-
life (Eichenwald 2016).

Xanthines exhibit respiratory effects as they improve 
ventilation and increase carbon dioxide sensitivity by 
blockade of adenosine receptors. Although caffeine had 
been used for thirty years, the first study evaluating the 
long-term efficacy and safety of caffeine therapy for 
apnea of prematurity was developed by Schmidt and col-
leagues and published in 2007 (Schmidt et al. 2007). Pre-
viously, this group has demonstrated that caffeine reduces 
the incidence of bronchopulmonary dysplasia (Schmidt 
et al. 2006). Then, Schmidt and co-authors (2007) have 
observed that, at eighteen to twenty-one months old, caf-
feine significantly enhances the rate of survival without 
developing neurological problems (Schmidt et al. 2007). 
They show a reduction in the severity of eye disease, 
cerebral palsy, and cognitive delay, as well as a better 
psychomotor development in the caffeine-treated group. 
The authors discuss that these results could be achieved 
because treatment with caffeine reduces important vari-
ables: time with respiratory support, the need of postna-
tal corticosteroids, the surgery to close a patent ductus 
arteriosus, and the rate of bronchopulmonary dyspla-
sia. However, the strongest intermediate variable is the 
reduced time for any positive airway pressure, because 
it can compromise the lungs, which in turn can evolve 
into a bronchopulmonary dysplasia, a risk factor for 
the development of neurological issues (Schmidt et al. 
2007). Therefore, caffeine levels higher than 7.9 mg/kg 
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body weight per day have been reported as being safe and 
effective in apnea of prematurity treatment in neonates 
born before 28 weeks of gestation (Francart et al. 2013).

Caffeine and Retinopathy of Prematurity

Caffeine treatment for infants with apnea of prematu-
rity also reduces severity of ROP. As an ischemic retin-
opathy, adenosine is also released as a consequence of 
ischemia, and the role of the nucleoside has been inves-
tigated in animal models of ROP, described as oxygen-
induced retinopathy (OIR). Genetic inactivation of  A2A 
or treatment with an antagonist of the receptor, KW6002, 
reduces vaso-obliteration induced by OIR and inhibits 
irregular retinal angiogenesis both in young and adult 
animals (Liu Xiao-Ling et al. 2010; Zhou et al. 2018). 
KO of  A1 receptor also has positive effects on vaso-oblit-
eration in a OIR model, reducing normal vessel growth, 
even though it does not reduce neovascularization into 
the vitreous (Zhang et al. 2015). Zhang et al. (2017) 
have also evaluated the effect of caffeine (1 g/L) through 
nursing mothers, in OIR model (from P7–P12), during 
different time windows: P0–7 (pre-treatment), P0–17 
(continuous treatment), P7–12 (hyperoxic phase), and 
P12–17 (hypoxic phase). Caffeine exposure reduces vaso-
obliteration and creation of avascular zones when treat-
ment occurs during the entire period, or even restricted 
to hyperoxic phase. Furthermore, neovascularization 
is reduced by treating during any time window except 
for pre-treatment. Importantly, caffeine treatment does 
not interfere in normal postnatal vascular development 
(Zhang et al. 2017). Further analyzes show that the effect 
of caffeine (the decrease of avascular zones) at P12 is 
totally dependent on  A2A, while the effect on avascular 
zones and neovascularization at P17 is only partially cor-
related to the receptor. In accordance, caffeine (10 mg/
kg i.p.), as a single application 15 min before protocol of 
hyperoxia (80% oxygen) for 24 or 48 h, reduces oxidative 
stress markers, like lipid peroxidation, heme oxygenase-1 
(HO-1), and  H2O2 formation, and reduces gene expres-
sion of Nrf2, glutamate-cysteine ligase and increases 
gene expression of SOD3 in brain homogenates (Endes-
felder et al. 2017). Additionally, the authors observe 
reduction of inflammatory markers such as iNOS, IL-1β, 
TNF-1α, and interferon gamma, a reduction of apoptotic 
mediators, like nuclear poly (ADP ribose) polymerase 1 
(PARP-1), apoptosis inducing factor (AIF) and caspase-3, 
and a reduction of the matrix metalloproteinase 2 activity, 
which could contribute to neurotoxicity and inflamma-
tion. Caffeine citrate (20 mg/kg i.p. at P0 and mainte-
nance doses of 5 mg/kg/day from P1–13) and ketorolac 
(COX inhibitor; topical ocular administration once a day 
from P5–7) reduce severe OIR performed from P0–14 

and analyzed at P14, or 7 days later (enabling recovery) 
(Aranda et al. 2016). Therefore, the data obtained by ani-
mal model studies corroborate the idea of caffeine as a 
good therapeutic tool to reduce retinal damage in ROP. 
Most recently, it was shown that treatment with caffeine 
(30 mg/kg, single in ovo injection, 48 h before ischemia) 
protects chick embryo retinal cells in an ex vivo model of 
acute ischemia (OGD). The protective effect is dependent 
on CREB phosphorylation and BDNF signaling. Such 
effect could be mimicked by DPCPX, an antagonist of 
adenosine  A1 receptors, indicating the presumably mech-
anism of action for caffeine (Pereira-Figueiredo et al. 
2020). It is important to note that other pharmacologi-
cal interventions have also been investigated as potential 
treatment for ROP, such as Omega-3 fatty acid, insulin-
like growth factor 1 inducers, vitamin A, cyclooxygenase 
inhibitors, inositol, and propranolol (Beharry et al. 2016; 
Aranda et al. 2019).

Caffeine in the Immature Ischemic Brain

Caffeine Dose and Neuroprotection

Studies in animal models have also been positively cor-
relating low–moderate doses of caffeine treatment with 
cell survival in the immature brain, exposed to ischemic 
events in different developmental windows. A protective 
effect for caffeine is achieved in a close time window, at 
least less than 6 h, after ischemia. Interestingly, even a 
single injection of caffeine (5 mg/kg i.p.), directly after 
HI, also reduces infarct zone and cerebral atrophy in rats 
submitted to ischemia at P10 and analyzed at P24 (Win-
erdal et al. 2017). Cognitive function also seems to be 
affected by a single dose of caffeine (10 mg/kg i.p.) after 
induction of ischemia at P7, and evaluated months later, 
as a better performance was observed in Morris water 
maze at P90–95 rats (Alexander et al. 2013). Treatment 
of P7 rats with caffeine citrate (20 mg/kg/day i.p) just 
before ischemia, and during the following 3 days, reduces 
TUNEL staining in hippocampus and parietal cortex ana-
lyzed at P11 (Kilicdag et al. 2014). Using a similar pro-
tocol of treatment, caffeine citrate (20 mg/kg i.p.), given 
just after ischemia and 24 h later, also restores standard 
behavior, besides cortical and hippocampal volume, in 
adult rats submitted to ischemia at P6 (Potter et al. 2018). 
Recently, Di Martino and colleagues have shown that a 
single dose of caffeine (5 mg/kg i.p.) right after HI in 
rats at P10 reduces global damage score, apoptotic cell 
number, microglial activation, and inflammatory gene 
expression. The protection did not occur if caffeine was 
administered at 6, 12, or 24 h after HI (Di Martino et al. 
2020). Therefore, the available data from animal mod-
els indicate a protective role for low–moderate doses of 
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caffeine when administered in a close time window, at 
least less than 6 h after ischemia.

Beneficial outcomes with caffeine treatment in the 
drinking water of dams are also observed. Low dose 
of caffeine (0.3 g/L in the drinking water of the dams), 
from P0 to P21, reduces brain damage induced by HI 
performed at P7, and evaluated by brain weight at P21 
(Bona et al. 1995). On the other hand, a high dose of caf-
feine (0.8 g/L) has no protective effect (Bona et al. 1995).

White Matter Brain Injury

Few studies explore the caffeine protective effects in the 
white matter of the ischemic immature brain. Caffeine 
exposure (0.3 g/L in drinking water through the dam) 
as soon as P2–P12 reduces periventricular white mat-
ter injury (PWMI) induced by chronic hypoxia (P3–P12) 
(Back et al. 2006). PWMI is known to affect very low 
birth weight infants, and it is the leading cause of neuro-
logical disability in survivors of prematurity (Volpe 2003; 
Ferriero 2004). Accordingly, treatment of P7 rats with 
caffeine citrate (20 mg/kg/day i.p) just before ischemia, 
and during the following 3 days, decreases white matter 
damage in subcortical regions (Fa-Lin et al. 2015).

Effect of Caffeine in the Adult Brain and Retina 
in Ischemic Conditions

Brain Ischemia and Role of Caffeine

The preventive/therapeutic potential of caffeine for 
ischemia has also been investigated in CNS of adult ani-
mals. It has been reported a correlation between coffee 
consumption and lower risks of stroke (Lopez-Garcia 
et al. 2009; Larsson et al. 2011; Kim et al. 2012; Liebes-
kind et al. 2016). The correlation is not direct to caffeine, 
and the potential of other coffee compounds cannot be 
ruled out (Cossenza 2018). Even though, evidence using 
adult animal models corroborates the idea that the main 
chemical agent involved in this protection is caffeine. 
Exposure to caffeine in water (0.2%) for 4 weeks before 
a 5-min bilateral occlusion in adult gerbils, evaluating 
7 days after ischemia, reduces loss of pyramidal cells 
in the CA1 region of the hippocampus (Rudolphi et al. 
1989). Resonance images and histopathological analy-
sis of adult rodents reveal differences between chronic 
(three times a day by gavage, 20 mg/kg per dose for the 
first week, and 30 mg/kg per dose in the third week, last 
dose at 24 h before ischemia) and acute (10 mg/kg i.v. 
30 min before ischemia) effects of caffeine on ischemic 
neuronal injury of rats subjected to forebrain ischemia. 
While chronic treatment reduces neuronal injury, acute 
treatment has no effect (Sutherland et al. 1991).

Caffeine Effect in Ischemic Retinopathies

Interesting data concerning ischemia in the mature 
retina are also reported. Recently, the effect of caffeine 
(100 µM) was evaluated in an in vitro model of diabetic 
macular edema, the major cause of vision loss in dia-
betic retinopathy. The xanthine reduces permeability, 
induced by hyperglycemia/hypoxia, in monolayer cul-
ture of human retinal pigment epithelial cells (ARPE-
19) by restoring tight junctions and reducing apoptotic 
rates (Maugeri et al. 2017). Treatment with caffeine in 
drinking water (1 g/L) for 2 weeks, before the ischemia 
induction until the end of the experiment, reduces apop-
totic levels and pro-inflammatory cytokines when ana-
lyzed 7 days after the transient IOP raise, even though 
exacerbates 48 h after IOP (Boia et al. 2017). Using pho-
tocoagulation of trabecular meshwork of limbal veins to 
produce ocular hypertension (OTH), to mimic glaucoma 
symptoms, the same group, using the same treatment pro-
tocol, shows that caffeine could diminish inflammation 
and ganglion cell loss 7 days, but not 3 days, after OTH 
(Madeira et al. 2016b). In humans, a 20-year follow-up 
involving 121.172 people found no association between 
caffeinated coffee consumption and the risk of develop-
ing primary open-angle glaucoma (POAG). However, 
for those with family history of glaucoma and high IOP, 
the association seems to exist, as coffee drinkers show 
higher chances of developing the pathology (Kang et al. 
2008). But, the risk may not be due to caffeine’s effects 
on IOP, since ocular application of the compound does 
not contribute to elevate IOP in a small five patients study 
with POAG/OTH (Chandra et al. 2011). However, it does 
show an acute IOP-elevating effect in a study with seven-
teen healthy patients (Redondo et al. 2020). It seems that 
this acute effect is dependent on the level of routine con-
sumption, being more expressive in low caffeine consum-
ers as demonstrated in a study involving forty patients 
(Vera et al. 2019). The positive association of caffeinated 
coffee consumption and risk of exfoliation glaucoma or 
exfoliation glaucoma suspect, compared to abstainers, is 
also reported in another follow-up involving more than 
120.000 people for more than twenty years (Pasquale 
et al. 2012), as for higher IOP in coffee consumers with 
open-angle glaucoma in a smaller study involving 3654 
patients (Chandrasekaran et al. 2005).

Concluding Remarks

Ischemia provokes cell death in developing and mature 
CNS, promoting neurological disabilities and ophthal-
mological deficits. The neural damage occurs as a conse-
quence of energy deficit and ionic imbalance, which leads 
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to excitotoxicity, oxidative stress, and inflammation. Several 
studies have been investigating the protective potential of 
adenosine receptors since the concentration of adenosine 
increases soon after the ischemic event. Taken together, the 
data from adult CNS indicate that adenosine release during 
ischemia is protective mainly via activation of  A1 recep-
tors. Even the upregulation of  A1 receptors, previous to 
an ischemic event, reduces the tissue damage, possibly by 
increasing the availability of receptors to be activated by 
released adenosine during ischemia (Rudolphi et al. 1989; 
Von Lubitz et al. 1994a). The main protective mechanism 
mediated by  A1 receptor seems to be the inhibition of neu-
rotransmitter release, especially glutamate, attenuating the 
ischemia-induced excitotoxicity. A few studies focus on 
the signaling pathways involved in the beneficial role of  A1 
receptors. The stimulation of  A1 receptors reduces oxidative 
stress, TNFα production, and increases phosphorylation of 
ERK and GSK3β (Fig. 4).

There is a substantial amount of data indicating that  A2A 
receptor inhibition is also protective in ischemic CNS. The 
absence of  A2A (KO) in adults renders a greater resistance 
against ischemia-provoked cell death (Chen et al. 1999; Gui 
et al. 2009). The main protective mechanism provided by the 
inhibition of  A2A receptors seems to be the modulation of 
synaptic transmission. In addition, it has been described that 
the blockade of  A2A receptors also promotes the modulation 
of glutamate availability by astrocytes, the control of inflam-
matory signals in microglia, as well as the maintenance of 
myelin organization, empowering the protective outcome 
(Fig. 4). The protection could also involve endothelial cells 
since the absence of  A2A receptors in these cells renders 
several protective changes in the context of ischemia (Zhou 
et al. 2019). A few studies have focused on the signaling 
pathways that support this beneficial role. Moreover, the 
inhibition of  A2A receptors diminishes p-ERK, NFκB, TNF-
α, IL-6, iNOS, caspase-3, Cyt C, p-JNK, p-p38, p-CREB, 

Fig. 4  Effects of adenosine receptor modulation in ischemic events. 
a The increase of extracellular adenosine availability during ischemia 
allows the activation of all adenosine receptors in different cell 
types. In astrocytes, stimulation (positive symbol, +) of  A1 receptors 
(green), or inhibition (─┤) of  A2A receptors (red), reduces EAAT1/2 
exacerbating the augment in extracellular glutamate and contributing 
to excitotoxicity. Astrocytes and microglia experience an increase in 
CD39 and CD73 content in ischemic events. In the case of  A1 recep-
tors, the regulation of EAATs occurs through MAPK/PKC pathway. 
The activation of microglial  A2A receptors induces intracellular path-
ways related to an inflammatory response. Furthermore, in endothe-
lial cells,  A2B (purple) and  A3 (yellow) receptors stimulation, or  A2A 
receptor inhibition, reduces VCAM/ICAM content, immune cells 

infiltration, BBB breakdown, and edema. The inhibition of  A2A 
receptors in oligodendrocyte and microglia cells reduces, respec-
tively, p-JNK and p-p38 as well as TNF-α. Canonical pathway is rep-
resented in postsynaptic neuron. The right panel depicts the pre- and 
postsynaptic terminals and the effect of adenosine receptors agonists 
or antagonists during ischemia. b The activation of presynaptic  A1 
receptors decreases glutamate release through a direct mechanism 
or through the inhibition of voltage-gated  Ca2+ channels (VGCC). 
Antagonists of  A2A presynaptic receptors also inhibit glutamate 
release. In the postsynaptic neurons,  A1 agonism or  A2A antagonism 
triggers multiple intracellular pathways promoting antioxidant and 
anti-inflammatory responses, decreasing oxidative stress and cell 
death
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c-fos, and ROS, all increased by ischemia/reperfusion 
(Fig. 4). Finally, it seems that the effect can also depend 
on the CNS area since activation of  A2A can reduce dam-
age induced by ischemia specifically in the spinal cord and 
cortex (Reece et al. 2006; Melani et al. 2014a).

Although there are fewer data concerning  A2B and  A3 
receptors effect, the stimulation of these scarce receptors 
has been associated with a protective outcome acting on 
different types of cells, endothelial, microglia, and neurons 
(Fig. 4). Nonetheless, in vivo intervention with  A3 receptor 
agonists could be challenging due to a hypotensive response.

It is relevant to highlight that most of the studies using selec-
tive pharmacological tools to modulate adenosine system in 
ischemia were performed in adult animals. A few available data 
from adenosine role in the immature context points to a differ-
ent protective mechanism from adults. For instance, the absence 
of  A1 receptors (KO) can prevent hypoxia-induced ventricu-
lomegaly, a distinctive trace of periventricular leukomalacia, 
commonly associated with brain damage in premature infants 
(Turner et al. 2003); treatment with adenosine  A1 agonist, 
after HI, does not feature neuroprotective results (Ådén et al. 
2001); and  A2A KO aggravates neuronal damage in immature 
brain after HI (Ådén et al. 2003). What is the source for this 
different response? The signaling underlying cell survival, in 
developing or mature neurons, can differ in crucial aspects, espe-
cially involving calcium transients and NMDA receptor activ-
ity (Cunha 2005). These differences probably account for the 
existence of some conflicting data about the role of adenosine 
receptors in brain ischemia. In addition, some studies show that 
the coupling to G protein/intracellular pathways of  A2A recep-
tors may change during development. Socodato and colleagues 
have shown that  A2A receptor activation leads to cell death 
through coupling to PLC-protein kinase C in a narrow win-
dow of an early period of retinal development (Socodato et al. 
2011). Although  A1 receptor expression/content is upregulated 
by  A2A receptor (Pereira et al. 2010; Brito et al. 2012), which 
could explain the findings, the study discards this possibility by 
showing that  A1 receptor blockade has no effect. Therefore, the 
mechanisms involved in the different resistance to ischemia from 
immature to mature brain still represents a field to be explored.

Considering that the main molecular targets of caffeine, at 
least in a non-toxic dose, are  A1 and  A2A receptors, together 
with the great amount of data correlating the adenosine system 
with neuroprotection, many studies have been investigating 
the potential of caffeine to alleviate ischemic damage. Since 
caffeine has been used in the apnea of prematurity for more 
than thirty years, due to its bronchodilator effect, the majority 
of studies have explored the outcome in the immature CNS. A 
considerable number of studies show that low–moderate doses 
of caffeine attenuate the ischemia-induced injury in immature 
CNS, indicating that the inhibition of  A2A receptor could be 
more efficient to save CNS cells than stimulation of  A1/A2B/
A3 receptors by released adenosine or selective agonists. It is 

not well established the reason why the blockade of  A2A pre-
vails when compared to activation of  A1 receptor by adenosine 
released during ischemia. It probably involves different neuro-
chemical aspects, such as adenosine/caffeine metabolization, 
strict control of extracellular adenosine availability, control of 
 A1 by  A2A receptor in heterodimers, and upregulation/down-
regulation after treatment, among others. Besides that, due 
to the activity of  A2A receptors in different cell types during 
ischemia, caffeine could target not only neurons but almost 
every other CNS cell type (endothelial, microglial, astrocytes, 
and oligodendrocytes), perhaps resulting in a stronger prosur-
vival outcome (Fig. 4). Despite all that, the therapeutic time 
window of caffeine administration seems to be narrow and 
close to the ischemic event. Accordingly, a single exposure to 
caffeine soon after ischemia reduces infarct area and amelio-
rates cognitive function evaluated later in the adult.

The data from mature retina studies indicate that pretreat-
ment with  A1 agonist or post-treatment with  A2A antagonists 
reduces the damage provoked by ischemia. Using animal 
models of glaucoma, caffeine exposure, before ischemia and 
for additional two weeks, decreases ischemic injury. How-
ever, caffeine treatment in a later period can worsen ischemic 
deterioration. The analysis of the possible correlation of 
human consumption and glaucoma in studies that include a 
higher number of subjects, evaluating longer periods, show 
positive correlation of coffee drinkers with the (a) chance to 
develop the pathology in those with family history of glau-
coma and high intraocular pressure; (b) higher intraocular 
pressure in open-angle glaucoma patients; and (c) risk of 
exfoliation glaucoma, even though no association of coffee 
consumption with the risk of developing POAG was found.

Finally, in the mature brain, there are only two studies 
with animal models demonstrating that chronic, but not 
acute, caffeine treatment reduces the damage promoted 
by ischemia (Rudolphi et al. 1989; Sutherland et al. 1991). 
More intriguingly, one of these studies suggests that the 
effect depends on the upregulation of  A1 receptor, even 
though it was not tested (Rudolphi et al. 1989). Thus, 
despite the great number of studies in immature CNS, it 
is still unclear whether caffeine protects the mature brain 
from ischemia and the gap of information is even wider 
concerning the signaling pathways involved. Even in the 
immature CNS, the cellular mechanisms involved in the 
protective role of caffeine have not been largely explored. 
Although different experimental paradigms strengthen 
the neuroprotective role of caffeine in the context of CNS 
ischemia, further studies are still required to successfully 
translate the current knowledge to human therapies.
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