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Abstract

Ischemia is characterized by a transient, insufficient, or permanent interruption of blood flow to a tissue, which leads to an
inadequate glucose and oxygen supply. The nervous tissue is highly active, and it closely depends on glucose and oxygen to
satisfy its metabolic demand. Therefore, ischemic conditions promote cell death and lead to a secondary wave of cell damage
that progressively spreads to the neighborhood areas, called penumbra. Brain ischemia is one of the main causes of deaths
and summed with retinal ischemia comprises one of the principal reasons of disability. Although several studies have been
performed to investigate the mechanisms of damage to find protective/preventive interventions, an effective treatment does
not exist yet. Adenosine is a well-described neuromodulator in the central nervous system (CNS), and acts through four
subtypes of G-protein-coupled receptors. Adenosine receptors, especially A, and A, , receptors, are the main targets of caf-
feine in daily consumption doses. Accordingly, caffeine has been greatly studied in the context of CNS pathologies. In fact,
adenosine system, as well as caffeine, is involved in neuroprotection effects in different pathological situations. Therefore,
the present review focuses on the role of adenosine/caffeine in CNS, brain and retina, ischemic events.
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Introduction

Hypoxia—ischemia (HI) is characterized by a local or sys-
temic, transient or permanent, interruption of blood flow,
and oxygen supply, leading to an inability to meet cellular
energy demands. When the CNS is affected, the cell death
caused by ischemia provokes brain injury and neurologi-
cal disabilities. This pathological condition can affect both
developing and mature CNS, with long-term consequences
and few preventive/therapeutic interventions. In addition,
all the main retinopathies that cause blindness in the world,
such as age-related macular disease (AMD), glaucoma,
and diabetic retinopathy (Bourne et al. 2017), display an
ischemic component at some point of the disease, resulting
in a worsening of visual impairment. So, ischemia is also a
main problem in the ophthalmology field.

Since there is no effective treatment for ischemia, and
concerning its negative outcomes, the importance to under-
stand the mechanisms of cell death and possible neuropro-
tective interventions becomes evident. Ischemia induces
several alterations in cellular physiology, starting with a
decrease in ATP production, that affects all ATP-dependent
cellular functions, followed by the release of neurotransmit-
ters, such as glutamate, leading to excitotoxicity and cell
death (Nicholls et al. 1987; Lipton 1999; Reid et al. 2003;
Kostandy 2012; Mayor and Tymianski 2018). Moreover,
there is also an increase in the extracellular availability of
adenosine, both from ATP hydrolysis and by reversal of
adenosine transporters (Melani et al. 2014b; Pedata et al.
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2016). A number of studies have demonstrated a role for
adenosine receptors in hypoxic and ischemic conditions.
Adenosine receptors are G protein-coupled receptors named
A, and A;, which classically inhibit adenylyl cyclase (AC)
by activating Gi protein, while A,, and A,y increase AC
activity through Gs/Golf (Borea et al. 2018). A; and A,,
are the most abundant adenosine receptors in the CNS, and
several studies have shown their involvement in cell pro-
tection mechanisms. These receptors are non-selectively
inhibited by low—moderate concentrations of caffeine that
can be achieved by daily doses of coffee (Fredholm et al.
2017). Caffeine is considered a mild stimulant to the CNS,
and it can also be found in several other sources of foods
and drinks consumed worldwide by the majority of adults
(Heckman et al. 2010; Mitchell et al. 2014). Therefore, the
present review will focus on studies that shed light into
caffeine, as well as adenosine, as a promising therapeutic
tool for ischemia. Moreover, it also brings data from epi-
demiology, health system costs, the mechanisms involved
in ischemia-induced cell death, available treatments, and
the present challenges. However, it is important to note that
there is a robust amount of data on the roles of adenosine
and caffeine on neurophysiology and neuroprotection, apart
from ischemic context, that goes beyond the proposal of
this review, but it is essentially connected to the subject and
can be satisfactorily appreciated by some fulfilling readings
(Cunha 2005, 2016; Costenla et al. 2010; Gomes et al. 2011;
Dos Santos-Rodrigues et al. 2015; Kolahdouzan and Hama-
deh 2017; Liu et al. 2019; Lopes et al. 2019).

Epidemiology of Ischemic Events

Adult Stroke

Among neurological diseases, stroke accounts for the largest
proportion of deaths (67.3%), disability-adjusted life years
(DALYs—47.3%), and it is the third overall leading cause of
death worldwide after heart disease and cancer (Moskowitz
et al. 2010; GBD 2017, Lallukka et al. 2018).

Stroke is classified into two main categories: ischemic,
when blood flow is interrupted by a clot/thrombus, account-
ing for 87% of the cases; or hemorrhagic, when there is a
rupture of a blood vessel resulting in leakage to adjacent tis-
sue (Ovbiagele and Nguyen-huynh 2011; Bejot et al. 2016;
Lee et al. 2018). As the nervous tissue has a high energy
demand, the oxygen and substrate deprivation lead to irre-
versible damage detectable within minutes. Thus, it results
in brain damage and neurological disabilities that can be
reflected in impaired behaviors associated with memory,
learning and locomotion (Janardhan and Qureshi 2004; Li
et al. 2013; Lee et al. 2018).
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There are several risk factors associated with the inci-
dence of stroke, with hypertension being the most prevalent
among modifiable ones, linked to 35% of the cases. Other
risk factors include smoking, obesity, poor diet, sedentary
lifestyle, diabetes mellitus, high alcohol consumption, psy-
chosocial factors, cardiac cause, and ratio of apolipoprotein
B and apolipoprotein A; (O’Donnell et al. 2010; Soler and
Ruiz 2010; Bejot et al. 2016). Many of these are considera-
bly easy to overcome, so preventive strategies should be used
to reduce the risk and the cost of treatment. Non-modifiable
factors connected to the pathology are as follows: age, as the
incidence increases with aging (Wolf et al. 1992; Rosamond
et al. 2008; Romero et al. 2008); gender, overall stroke inci-
dence is lower in women, even though these numbers change
when incidence and mortality are analyzed at older ages
(Rothwell et al. 2005; Lofmark and Hammarstrom 2007,
Reeves et al. 2008); genetics/heredity; and ethnicity (Soler
and Ruiz 2010).

The economic burden of the disease is extremely rel-
evant, as patients may need permanent care depending on
the severity of the stroke (Table 1). In 40% of the cases,
patients acquire moderate to severe impairment and need
special care, while 10% need constant care in long-term care
facilities (Rajsic et al. 2019). Table 1 also summarizes the
current ischemic stroke treatment, which is based on two
fronts approved by the United States Food and Drug Admin-
istration, along with its limitations.

Perinatal Hypoxia-Ischemia

Concerning prenatal developmental, HI may occur due to a
mechanical process, placental insufficiency, prolonged labor
or folds in umbilical cord (De Haan et al. 2006; Martinez-
Biarge et al. 2012), besides events of preeclampsia and
maternal bleeding (Paolo 2012). There are also other risk
factors, such as anemia, hypotension, multiple births, smok-
ing, and drug abuse (Pundik et al. 2006). Pre- and perinatal
lesions alter CNS development, causing different outcomes
according to the kind of insult, the developmental period,
the intensity, and the affected area. HI events, in addition to
causing newborns to die, are also the main triggering fac-
tor for encephalopathy (Kurinczuk et al. 2010) and perma-
nent brain damage in children (Johnston et al. 2009; Volpe
2012). Perinatal hypoxic-ischemic encephalopathy (HIE)
affects 1-3 of every 1000 babies born at term (Yang and
Lai 2011). Of these children, 15-20% die in the postnatal
period, characterizing HIE as one of the most significant
causes of neonatal mortality. Of those who survive, 25%
develop permanent neurophysiological consequences (Van-
nucci 2000; Chen et al. 2009). In spite of the advances in
neonatal medicine, the proportion of infants diagnosed with
neurological deficits after suffering perinatal insults remains
stable (MclIntyre et al. 2013).

In premature (or underweight) newborns, the numbers
are even more alarming, since the incidence of perina-
tal asphyxia corresponds to around 60%, and 20-50% of
the babies who have undergone HI events exhibit deficits
later, such as difficulty in concentration, cognitive delay
(Filloux et al. 1996; Gross et al. 2005), visual, motor and
perceptual disorders, hyperactivity (Vannucci 2000; Perl-
man 2006) and, in even more severe cases, epilepsy and
cerebral palsy (Nelson et al. 2003).

Cognitive damage, although strongly associated with
neuromotor deficits, can be seen in children who have suf-
fered HIE, in the presence or absence of motor impair-
ments (Van Handel et al. 2007; Schreglmann et al. 2020).
These sequelae can mark the school phase due to learn-
ing delays (Robertson and Perlman 2006) and the impair-
ments may persist throughout adolescence, with an intense
reduction in episodic memory (Gadian 2000), poor per-
formance in executive functions, and visual and verbal
memory (Maiieru et al. 2001).

Neonatal care represents a major burden for health sys-
tems around the world. Considering neonatal intensive
care units (NICUs) in the US, there is an estimative of
77.9 admissions per 1000 live births in the period between
2007 and 2012 (Harrison and Goodman 2015). The dam-
age caused by HIE is associated with high morbidity and
mortality, which requires the highest level NICU care and
interventions. In this context, HIE newborns have been
considered to be part of a small group of patients who con-
sume the major amount of NICU expenses (Bayne 2018).
Information for expenditures and limitations of treatment
for perinatal ischemia is summarized in Table 1.

In order to obtain therapies for the prevention of mortal-
ity and treatment of disabilities, the exploration of certain
key factors involved in these damages is essential. Stud-
ies in animal models have revealed potential candidates
for therapeutic intervention based on mechanisms anti-
excitotoxicity, anti-oxidation, anti-inflammation, and anti-
apoptosis (Greco et al. 2020).

Retinopathies with Ischemic Components

Ischemia may be considered a key factor in the patho-
physiology of visual diseases, including retinopathies.
Retina has been classified as one of the most energeti-
cally demanding tissues, being even more metabolically
active than the brain (Ames 1992; Yu and Cringle 2001;
Wong-Riley 2010). The acute or chronic occlusion of reti-
nal microvasculature may impair retinal perfusion causing
permanent visual loss, such as verified in glaucoma, DR,
and AMD (Schmidt et al. 2008; Kaur et al. 2008; Szabadfi
et al. 2010).
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Glaucoma

Glaucoma is an optic neuropathy whose main clinical sign
is the increase in intraocular pressure (IOP) and the main
outcome is progressive and irreversible visual loss. It is
estimated to affect more than 60 million people worldwide
(Quigley and Broman 2006) and this number is expected to
increase to 111.8 million in 2040 (Tham et al. 2014). It is
classified as a prevalent neurodegenerative disease (Jiang
et al. 2020) and the most important cause of irreversible
blindness (Tham et al. 2014).

Glaucoma has been considered a multifactorial disease
with genetic and environmental components, with aging
being the most important risk factor (Doucette et al. 2015).
Although its pathophysiology has not been completely
defined so far, some mechanisms are proposed to explain the
causes underlying retinal ganglion cell death and optic nerve
damage (Doucette et al. 2015). Ischemic conditions may
be created by an increase in IOP which exerts pressure on
retinal vasculature (Harris et al. 2001; Osborne et al. 2001).
Besides, glutamate excitotoxicity (Casson 2006), oxidative
stress (Ko et al. 2005; Tezel 2006; Gericke et al. 2019), and
inflammation (Fontaine et al. 2002; Wong et al. 2015; Ger-
icke et al. 2019) have also a role in glaucoma pathogeny.

As current available interventions to treat glaucoma have
several limitations, the development of new therapeutic
agents is of great relevance concerning the economic burden
represented by glaucoma treatment (Table 2).

Diabetic Retinopathy

Considering people in working age, DR is the leading cause
of vision loss and blindness (Ding and Wong 2012; Yau
et al. 2012). In general, one-third of the patients with DM
may present DR (Nam Han Cho et al. 2017), being more
prevalent among patients with type 1 DM (Tarr et al. 2012).
For the next years, the number of people affected by DR is
expected to dramatically increase, which reflects the high
incidence of DM, obesity, and also population aging (Saad-
dine et al. 2008; Ting et al. 2016).

Retinal damage derived from chronic hyperglycemia in
DM is complex, but the central event is attributed to oxi-
dative stress (Brownlee 2001; Arden and Sivaprasad 2011;
Mendonca et al. 2020). Hyperglycemia-induced alterations
cause endothelial cell dysfunction, breakdown of blood-reti-
nal barrier and increase in vascular permeability, leading
to edema (Zhang et al. 2014; Stitt et al. 2016). Moreover,
the production of trophic factors is reduced, which is asso-
ciated with capillary degeneration (Brownlee 2001; Arden
and Sivaprasad 2011). As a result, the tissue responds to
ischemic-induced signaling, triggering events of neovascu-
larization and generating an abnormal retinal vasculature,
which characterizes the proliferative stage of the disease

(Al-Shabrawey et al. 2013). Furthermore, the present view
of DR involves neuroinflammation (Karlstetter et al. 2015;
Yu et al. 2015), neurodegeneration (Kadtubowska et al.
2016; Simo et al. 2018), and excitotoxicity (Kokona et al.
2016; Ola et al. 2019) events that may precede vascular
alterations.

The impacts of DR on visual function represent a rel-
evant challenge in public health, especially concerning care
expenditures and treatments (Table 2). Besides the expenses
directly related to healthcare, a significant economic impact
of DR is linked to the insertion or permanency of these
subjects in the job market (Rein et al. 2006). Thus, further
studies are needed to develop new effective therapeutic
treatments.

Age-Related Macular Degeneration

AMD is a progressive degenerative disease that primarily
impairs the central retina and leads to irreversible vision
loss. It is currently considered a major cause of blindness
in elderly people (Smith et al. 2001), affecting 170 million
people in the world (Pennington and DeAngelis 2016). Stud-
ies project that the number of patients diagnosed with AMD
may expand to 288 million by 2040 (Wong et al. 2014). The
high number of cases is directly attributed to the increase in
life expectancy, particularly in developed countries.

AMD consists of a multifactorial disease whose etiology
comprises genetic and environmental elements. A series of
genes have already been identified (Al-Zamil and Yassin
2017) as well as lifestyle risk factors, such as light expo-
sure (Chalam et al. 2011), diet (Chapman et al. 2019), and
tobacco smoking (Smith et al. 2001).

The disease can also be classified into two types: dry
and wet AMD, although specific pharmacological options
are only available for the treatment of wet AMD (Supuran
2019) (Table 2), but there are no preventive strategies or
cure (Hernandez-Zimbrén et al. 2018). The burden related
to AMD is highly underestimated (Brown et al. 2005); how-
ever, it is clear that vision loss negatively affects not only
one’s health but also their contribution and interaction with
others and consequently impacts society (Table 2).

Mechanisms of Cell Death Provoked
by Ischemia

The development of new, and efficient, treatment depends
on the profound understanding of cell death phenomenon
during the time of ischemia itself and reperfusion period
(Dirnagl et al. 1999). Ischemia refers to a pathological lack
of blood supply to a given tissue, so its maintenance is
drastically impaired (Fig. 1). When tissue perfusion is low,
cells are deprived of oxygen and metabolic substrates, and

@ Springer



Cellular and Molecular Neurobiology

‘Te 19 AomeIqeyS-[y) 9seasIp ay} 2Ind jou op A[jewnn

(STOT '8 10 exdnry-Azomesy)
uy10do)Ioa Jo asn oy} yim Aderayy orwreukpojoyd
PUE SPIOI2ISOOI0D ‘JDHA-IUE JO UOHRUIQUIO))

(L10T "Te 30 o1[Syuog ‘10T

T 12 STEEA *LT0T 'Te 32 AR[req ‘TT10T T 1o oreryood
-we)) Aderay) aanoun(pe ue se sjue[dwl proIgIsodNI0))

(610

“Te 30 BUURYY G1(T TB 12 NyeOUlY) SUONOE JOTA
oo1q Apoarpur jey syuaSe Jo uonoafur [eenIALIU]

(910¢ [oSeUIaUIZ PUE 1UQH ‘(T ¢ 0 1e])

SIONO0[q WAISAS UISUI)OIFUB-UTUI PUR ‘SIOJIQIYUT

7/19D31d ‘esepruoinyeAy ‘9JeIqyoudj ‘sI10}IqIYul dSeIp

-Ayue o1u0qIed ‘sNIp AI0JRWWRHUI-TIUR ‘SIONQIYUT
9sBIONPaI ASOP[E (T JO JudWIRAN) ) J0J SAIBPIPUR))
(9107 11EM2)S) UOTIBDIPAW IO 11 BIWAIA[S JO [onuo))
(9107 MemaS) ADFA-DUE JO suonoafur [eaniAeIU]
(9107 1Mema)S) uone[neosojoyd 1ose]

(L10T 'Te 10 o1y [ 10T Yieedg pue peloury3ozey)
sainpadoid [eo13ig

(810T pIezzen pue 31en) Aderoy) 1ose]

(L10T uonepunod :g1(OT TeYpeA pue IpeARIIUBIA)
s3o[eue urpue[3esoid

(Z10T

uonepunoy ‘G1(g JeypeA pue IpRARIUEBLA) SIONQIYUT
aseIpAyue oruoqIed ‘or3ouaipe-eyde ‘o131aurjoy)
(L10T uonepunod :g1(OT TeYpeA pue IpeARIUBIA)
S19y00]q-e32q d1do],

(L10T e 19 [PURIQ
-1ezay (G107 ‘Te 10 uuewrraddny]) uorsusirodAy re[noo
PUE JOBIEIRD JOJ YSLI SISBAIOUI JUSWIIRAT) PIOISISOINII0))
{(LT0T 'Te 10 uuewiofyos) paroadxo
UBY} [IOYOUq SSI] U0aq 9ABY STNIPp JOFA-NUY

10910

OpIS 0} ANP PINUNUOISIP 9IdM JO DAISN[OUOIUI [[1)S
ore soyeprpued [esrSojooewreyd yim saIpns [edIUI))

{(910T 'Te 30 SUoM ‘€10T

pue ‘S109Jj0 9pIS ULIA)-3UO] ‘s)s00 YIIY ‘UonenSIuIupe
9[qBIIOJWOOUN ‘SBISIP ) JO 95E)S PIOUBAPE U JoTIe],

(810T 'Te 10 oryZ)

sornunoo urdojaaap ur A[reroadse ‘uonerndod oy Jo

jred Jjueoyru3is v Aq popIojje 9q 10U UBD SUOTIUIAI)UT
[eo131nS puE JOSE] ‘UOIIBIIPAUW SB $ISOD [BIIPAW JOAII(]

*(800 sPIPWUS) dOI

Ul 9SBaIOUI Uk 9ARY Jou op sjuaned ewoone[3 jo ey
Jey) pajewns? s1 31 ysnoyife ‘JOJ 1051e) syusunean [y

(9107 'Te 30 umoIg) (1500
Jo011pul [eUONIppE) ITeakAusned/000'0c$
£(51500 [ed1paw Joa11p) Jeakpuoned/ce1 L 1SN

(810C T8 10 wyey)

Teakpuoned/ccez—1.,93 :AuBuiion

{010T ‘T 1° Z3uIey) Ieakyuaned/c ey (uspams
(9002

"Te 39 U1y (FOOT UT SIS0 [2OIPW) UOT[IIW €61$ 1SN

(00T ‘T 12 0sIaAel] ) 1824k /u0s1ad/6963 :2doing
:(020T “'Te 19 uewp[o])

(yuawwaredwr uoISIA YaIM) (0£9°81$ 01 dn

(sso[ uoisia ou) 1eakauaned/ S18$ 1SN

uoneIAUaFop
Ie[noewW paje[aI-a3y

Ayredounar onaqerq

BUIOONE[D)

SUOTIB)IWI'T JuSUIRI],

150D

uonIpuo)

SSO[ UOTSIA JO $asned Jud[eAald JSOuW 991y} 9y} J0J SUONBIIWI/JUSWIBAI] )S0)) T 3|qeL

pringer

Qs



Cellular and Molecular Neurobiology

4 Aerobic glycolysis
1 Anaerobic glycolysis
1 Lactate = | pH

A (

Ischemia
Blood flow |,

02
Nutrient supply |,

Presynaptic neuron

Postsynaptic neuron

(:) Na*/K+ATPase Pump

Caspase 8

- Calpain

m Voltage-gated calcium channel
Caspase 3 —» [Apoptosis |

m NMDA receptor

Q Sodium-calcium exchanger

[ﬂ Glutamate transporter

O K+ O Na* @ Ca?

Fig. 1 Deleterious effects of ischemia on presynaptic and postsynap-
tic neurons. The interruption or reduction of blood flow is associated
with the decrease of O, levels and nutrient supply. Neurons respond
to these effects by decreasing aerobic glycolysis, while increasing
anaerobic glycolytic process, leading to the accumulation of lactate
and to a pH reduction. As ATP levels decrease (1 and I), the failure
of Na*/K*/ATP pumps may occur (2 and II), which cause electrolyte
imbalance (3 and III), depolarization and opening of Ca>* voltage-
dependent membrane channels (4 and IV). In the presynaptic neu-
ron, these alterations increase neurotransmitter release, especially
glutamate (5). The reversal of EAAT transporters contributes to the
increase in glutamate availability in the synaptic cleft as well (6).
ATP deficiency also impacts neurons by generating reactive oxygen/

excretes begin to accumulate (Osborne et al. 2004; Kalogeris
et al. 2016). Once a tissue becomes ischemic, a metabolic
dysfunction is triggered. There is a decrease in glycolysis
and oxidative phosphorylation, reducing ATP production,
which, in turn, leads to failure in ionic pumps and ionic
imbalance (Lipton 1999; Kalogeris et al. 2016). Reduction
in sodium—potassium pump activity decreases the removal
of intracellular sodium, affecting membrane potential main-
tenance, and consequently depolarizing cell membrane.
Another result of cytoplasmic sodium accumulation is the
passive influx of chloride, which also attracts water into the
cell, causing cell swelling, and eventually, cell lysis, accom-
panied by cell content extravasation (Edinger and Thompson
2004; Duprez et al. 2009; Galluzzi et al. 2012). This kind
of acute death is known as necrotic cell death and occurs
mainly at the core of the ischemic region. Voltage-gated cal-
cium channels (VGCC) are activated by this depolarization,
increasing cytoplasm calcium concentrations and triggering
neurotransmitter release (Mayor and Tymianski 2018).

Excitotoxicity

Glutamate is the major excitatory neurotransmitter in the
CNS, and during ischemic events, a massive glutamate

nitrogen species (e.g., superoxide and peroxynitrite). The depolariza-
tion mediated by intracellular sodium increase (III) stimulates volt-
age-gated Ca®* channel (IV). Intracellular Ca>* level is also elevated
through the reversal of Nat/Ca®* exchanger (V). Ca®* overload also
affects the postsynaptic neuron as a result of NMDA receptor hyper-
activation (VI), triggering glutamate excitotoxicity. Thus, intracellular
Ca?* accumulation leads to the activation of different death pathways
such as the one mediated by NOS, Calpain, Caspase, and phospholi-
pase A2 (PLA2). It is important to note that other pathways contribut-
ing to cell death are not described in the scheme for summarization
purposes. For the clarity of the scheme Bax/Bad are show in mito-
chondria matrix

release occurs mainly through two different modes. Initially,
glutamate is released by exocytosis, a calcium-dependent
mechanism, and then by reversal of the glutamate transport-
ers, a calcium-independent mechanism (Nicholls et al. 1987,
Reid et al. 2003; Kostandy 2012). Both ATP and glutamate
are also released through hemichannels (Pedata et al. 2016).
Independent of the mechanism of release, glutamate further
depolarizes glutamate receptors-containing cells, creating a
positive feedback (Verkhratsky and Shmigol 1996; De Flora
et al. 1998). The depolarization also promotes the release
of magnesium from NMDA receptors (Zeevalk and Nick-
las 1992), making them even more responsive to glutamate,
and further intensifying the depolarization, by sodium and
calcium influx. Calcium entry through NMDA receptors,
VGCC and sodium—calcium exchangers can trigger sign-
aling pathways that promote cell death through apoptosis
(Figs. 1 and 2). Caspase-8 and calpains mediate BH3-inter-
acting domain death agonist cleavage, which translocates
into mitochondria, where it interacts with another set of pro-
apoptotic proteins, like Bax, Bak, and Bad. This signaling
promotes changes in mitochondrial permeability, triggering
the release of mitochondrial proteins like cytochrome c (Cyt
C), contributing to apoptosome formation through interac-
tion with apoptotic protease activating factor 1 (Apaf-1)
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—_—— Glutamate release/excitotoxicity

Oxidative stress

— Inflammation

—__ Celldeath

Response

No treatment

— — — Adenosinergic intervention

L
Minutestoa 24'h
few hours

Ischemia

Fig.2 Temporal profile of glutamate release/excitotoxicity (green),
oxidative stress (blue), inflammation (orange), and cell death (pur-
ple) after ischemia induction. Glutamate release begins a few min-
utes after the onset of ischemia, reaching a peak within an hour if
the noxious event lasts for that long. Extracellular glutamate content
gradually decreases as soon as reperfusion takes place, and the time
to restore basal levels is related to the severity of ischemia. Excito-
toxic and necrotic cell death occurs rapidly at the ischemic core but
programmed cell death and infarct volume are still ongoing for some
days until it is not detectable anymore in weeks. At the onset of rep-
erfusion, with the reestablishment of oxygen supply, reactive oxy-
gen species production dramatically increases, reaching a peak close
to 24 h after ischemia, when it starts to decline. Inflammation is the

(Orrenius et al. 2015; Datta et al. 2020). The mechanism
leads to effector caspase activation (e.g., caspase 3), lead-
ing to protein cleavage and DNA fragmentation, a hallmark
of apoptosis (Fig. 1). Briefly, other apoptotic pathways are
also provoked by ischemia, such as activation of death recep-
tors by molecules, like tumor necrosis factor-alpha (TNF-
a) and first apoptosis signal ligand (FasL). These induce
apoptosis through the activation of procaspase-8, leading to
executioner caspase-3 cleavage, which triggers cell signaling
involving p53 translocation to nucleus and induces transcrip-
tion of pro-apoptotic genes like Bax and Puma (Datta et al.
2020).

Oxidative Stress

Oxidative stress is another hallmark of an event of ischemia/
reperfusion. Data suggest that reactive oxidative species
(ROS) production begins at early reperfusion (Selakovic
et al. 2011; Nakano et al. 2017; Godinho et al. 2018; Kapoor
et al. 2019) (Fig. 2), when ATP is hydrolyzed to hypoxan-
thine, and ultimately converted to uric acid and superoxide
ions in a calpain-dependent way. Superoxide ions can form
hydroxyl radicals by Harber—Weiss reaction or interact with
nitric oxide, induced by NMDA receptor activation during
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latest event, with microglial and macrophage activation, adhesion
molecules expression, neutrophil infiltration, astroglial response, and
cytokine release taking place within some hours after ischemia. Since
inflammation is a multifactorial process, different phenomena occur
in maximal intensity in a larger time window, with some events still
rising up to 7 days, decreasing thereafter. The curves for non-treated
conditions were based on data that explore the temporal pattern of
mentioned parameters in the same study. The effect of adenosinergic
intervention was based on data from studies mentioned throughout
the text that explored at least one of the illustrated events in ischemia
and demonstrated protective effects at one or more of the time periods
shown

ischemia, generating peroxynitrite and nitrosyl radicals
(Chan 1996; Love 1999; Osborne et al. 2004; Kostandy
2012). Furthermore, calcium interference on mitochondrial
function causes an accumulation of free electrons, which
will be accepted by the oxygen in the early phase of rep-
erfusion, generating superoxide anions (Won et al. 2002).
Regardless of the mechanism in which oxidative stress is
generated, it triggers cell damage in the form of lipid peroxi-
dation, DNA fragmentation or protein degradation (Czerska
et al. 2015).

Inflammatory Contribution

Inflammation-induced cell death after ischemia is also a
well-established late-component of the pathology (Stevens
et al. 2002; Fang et al. 2006; Weston et al. 2007; Kriz and
Lalancette-Hébert 2009; Moxon-Emre and Schlichter 2010;
Perego et al. 2011; Shrivastava et al. 2013; Kawabori and
Yenari 2015; Cotrina et al. 2017; Zhang et al. 2019; Kapoor
et al. 2019) (Fig. 2). Within the lesion site, the expression
of chemokines and adhesion molecules increases, recruiting
immune cells from the bloodstream (e.g., T cells and mac-
rophages). Local microglia are activated and secrete inflam-
matory mediators that can potentially worsen the tissue
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damage in late phases of ischemia/reperfusion, increasing
infarct size. TNF-a and interleukin 1 beta (IL-1f), impor-
tant inflammatory mediators, are increased within ischemic
lesion regions, contributing to cell death in the brain and ret-
ina. Corroborating these data, blockade of these inflamma-
tory mediators reduces the magnitude of the damage (Stoll
et al. 2002; Osborne et al. 2004; Kawabori and Yenari 2015).

Role of Adenosine in Ischemic Conditions

Adenosine is a nucleoside that functions as a neuromodula-
tor in the CNS, regulating the release of neurotransmitters,
synaptic plasticity, sleep—wake cycle, and cell death (Sheth
et al. 2014). Adenosine acts through four types of G-protein-
coupled receptors already cloned and classified into A}, A,,,
A,p, and A;. The A| and A, receptors are classically coupled
to Gi/o protein, inhibiting AC activity and the production of
cAMP (Fig. 3a). On the other hand, A,, and A,y receptors
are classically coupled to Gs/olf protein, activating AC and
increasing cAMP levels, which will, in turn, act on a series
of effector proteins (Sheth et al. 2014).

Data from different experimental approaches may raise
doubts concerning adenosine affinity for its receptors. In the
most common view, A; and A, , are considered high-affinity

receptors and A,y and A, are low-affinity receptors (Beuk-
ers et al. 2000; Effendi et al. 2020; De Filippo et al. 2020).
Indeed, the observation that adenosine could have high or
low affinity for A, receptors led to the distinction of A,,
(high affinity) and A,y (low affinity) receptors (Bruns et al.
1986). However, Fredholm and colleagues (Fredholm et al.
2011; Fredholm 2014) have reported the difficulty in meas-
uring adenosine affinity and pointed out that a reliable
method to estimate this information is to assess the potency
of each receptor. This way, A, A,,, and A; might be equipo-
tent, while A,y is supposed to require higher concentrations
of adenosine to elicit the same response (Fredholm 2014).
Interestingly, high amounts of adenosine are only released in
pathological conditions, such as hypoxia, which also causes
A, receptors upregulation (Vecchio et al. 2019).

Many studies in the literature describe the increase in
extracellular adenosine availability during an ischemic event
(Pedata et al. 1993; Frenguelli et al. 2007; Melani et al.
2012; Chu et al. 2013). The transient release of adenosine
also increases during the period of cerebral ischemia and
remains elevated during the reperfusion process (Ganesana
and Jill Venton 2018). At the beginning of ischemia, adeno-
sine arises from the hydrolysis of the released ATP and,
later, cells release adenosine through their nucleoside trans-
porters (Melani et al. 2012). Moreover, ischemia increases
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Fig.3 Intracellular pathways coupled to adenosine receptors and
CNS distribution. a There are four types of adenosine receptors
named A;, A,,, Ay, and A;. The A, and A; receptors activate Gi/o
protein, while A,, and A,y receptors are coupled to Gs/olf pro-
tein inhibiting and stimulating, respectively, adenylyl cyclase. Thus,
adenosine receptors regulate cAMP levels, which impacts on protein
kinase A (PKA) and exchange protein directly activated by cAMP
(Epac) activity. A series of other effector proteins may also be modu-
lated. Moreover, adenosine receptors can stimulate the phospholi-
pase C (PLC) pathway. A, receptors regulate PLC via beta/gamma
complex (Biber et al. 1997; Dickenson and Hill 1998), whereas A,,
receptors act through Gq protein (Ribeiro et al. 2016; Socodato et al.

2011). Both A, and Aj; receptors can also stimulate PLC (Abbrac-
chio et al. 1995; Kohno et al. 1996; Pilitsis and Kimelberg 1998). b
The distribution of adenosine receptors varies dramatically within the
CNS. High densities of A, receptors are expressed in the cortex, hip-
pocampus, and cerebellum, while A,, receptors are more abundant
in the striatum and olfactory bulb. In contrast, A; and A,y receptors
are diffusely distributed in all brain regions in smaller amounts when
compared to A, and A,, receptors (Sheth et al. 2014). A|, A, 5, Asp,
and A, receptors are also found in retinal cells, a structure that is part
of the CNS, of different animals (Dos Santos-Rodrigues et al. 2015;
Brito et al. 2016; Grillo et al. 2019; Portugal et al. 2021)
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the expression of ecto-5 nucleotidase (CD73) in astrocytes,
and induces its expression in microglia, enhancing extra-
cellular adenosine formation (Braun et al. 1997). Within
minutes, the concentration of adenosine in the extracellular
medium reaches 1 mM, high enough to activate all P1-type
receptors (adenosine receptors) (Melani et al. 2012), which
are abundantly expressed in the CNS (Fig. 3b).

Interestingly, increased adenosine levels reduce neuronal
damage and decrease the infarct area in rodent models of
ischemia (Deleo et al. 1988; Dux et al. 1990; Lin and Phillis
1992; Mori et al. 1992; Park and Rudolphi 1994; Gidday
et al. 1995; Matsumoto et al. 1996; Miller et al. 1996; Jiang
et al. 1997; Newman et al. 1998; Tatlisumak et al. 1998;
Kitagawa et al. 2002). Treatment with a daily dose of exog-
enous adenosine, initiated 24 h after cerebral ischemia and
maintained for 7 days, contributes to decreased cell death
and sensorimotor functional recovery in the CA1 area of
hippocampus of rats (Seydyousefi et al. 2019). Accordingly,
the knockout (KO) for ecto-5'nucleotidase (CD73) shows
increase in ischemic damage (Petrovic-Djergovic et al.
2012). The signaling involved in adenosine protection in
HI is still unclear, but the anti-apoptotic effect of adeno-
sine in human umbilical vein endothelial cells (HUVECsS)
is reduced by the blockade of MAP kinase pathway (MEK/
ERK1/2), nitric oxide synthase (NOS), and protein kinase A
(PKA) (Feliu et al. 2019). Moreover, adenosinergic agents
also represent a potential pathway for neuroprotection in
immature neurons (Shalak and Perlman 2004; Perlman
2006).

Protective Role of Adenosine Through A, Receptor
in Ischemia

The activation of A, receptors has been correlated with
protective effects in ischemic situations both in mature and
immature CNS (Melani et al. 2014b; Pedata et al. 2016)
An important mechanism related to this effect refers to its
capacity to regulate neuronal excitability by restricting
calcium influx and, consequently, inhibiting the release
of neurotransmitters, such as glutamate (Corradetti et al.
1984; Dunwiddie 1984; Andiné et al. 1990; Goda et al.
1998; Latini et al. 1999b; Sebastizo et al. 2001; Tanaka et al.
2001; Marcoli et al. 2003; Arrigoni et al. 2005; Batti and
O’Connor 2010). In fact, it has been shown that ischemia-
induced synaptic depression is greatly inhibited in hip-
pocampal slices of A; KO mouse, reinforcing the idea of
protection through modulation of synaptic activity (Johans-
son et al. 2001; Kawamura et al. 2019). Indeed, treatment
with A, receptor agonists (CPA or CHA) reduces lactate
dehydrogenase (LDH) release induced by HI in cultures
of cerebellar granule (Logan and Sweeney 1997), and hip-
pocampal and cortex neurons (Daval and Nicolas 1994). In
addition, A, receptors antagonist, DPCPX, could reverse
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this effect in granule cells (Logan and Sweeney 1997). A
recent study has shown that the presence of CPA, an A full
agonist, or the partial agonists 2'-dCCPA and 3'-dCCPA,
during the entire experimental procedure, in hippocampal
slices, protects the neurons from oxygen glucose depriva-
tion (OGD)-induced irreversible depression and increases
cell viability of SH-SY5Y human neuroblastoma cells in
culture after OGD (Martire et al. 2019). The same protec-
tive profile was observed in vitro, using primary cultures of
neurons prepared from turtle brain homogenates subjected to
anoxic condition (Milton et al. 2007). In this case, treatment
with the selective A, receptor agonist, CCPA, prevents cell
death and anoxia-induced ROS production, but A, antago-
nist (DPCPX) exacerbates the injury (Milton et al. 2007).

The cell signaling involved in A, receptor protection
against ischemic death is also an important research field.
In primary cortical neurons in culture, the increase in cell
viability by treatment with paeoniflorin, before and during
OGD, occurs via A, receptor activation and depends on Akt
and ERK1/2 phosphorylation (Zhong et al. 2015). On the
other hand, there is evidence that incubation with a high con-
centration of an A, receptor agonist (500 nM CPA) induces
neuronal damage in the CA1 region of hippocampal slices,
which is prevented by DPCPX (Stockwell et al. 2016). The
authors suggest a mechanism of adenosine-induced persis-
tent synaptic depression, which includes AMPA subunits
internalization through dephosphorylation.

Similar effects are also found by using in vivo mod-
els of ischemia. In general, acute pre-treatment with A,
agonists preserves the morphology of neurons, spatial
memory, and learning capacity; increases neuron survival
and neurological scores; and reduces mortality in ger-
bils (Héron et al. 1994; Von Lubitz et al. 1994a, 1996).
Accordingly, in young A; KO mice (P10), larger infarct
area has been reported after unilateral HI (Winerdal et al.
2016). Administration of A; agonist CCPA 24 h before
middle cerebral artery occlusion (MCAOQO) protocol is also
protective, reducing infarct area, TNF-a levels, and lipid
peroxidation and increasing superoxide dismutase (SOD)
and glutathione (GSH) levels (Hu et al. 2012). Administra-
tion of A, agonist CPA 1 h before ischemia also reduces
lipid peroxidation when analyzed at 3 h and 3 days after
ischemia (Sufianova et al. 2014). Atef et al. (2018) inves-
tigated the signaling activated by A, receptor in ischemia.
The incubation of A, agonist CHA at the onset of reperfu-
sion drastically diminishes pyknotic nuclei in hippocam-
pal neurons induced by bilateral carotid occlusion. The
receptor agonist promotes reduction of reactive microglia,
glutamate, TNF-a, inducible NOS (iNOS), interleukin 6
(IL-6), Thiobarbituric acid reactive substances (TBARS),
c-fos, Cyt C, and caspase-3, all increased by ischemia.
Meanwhile, it increases interleukin 10 (IL-10) and nuclear
factor erythroid 2-related factor 2 (Nrf2) and elicits better
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performances in behavior tasks. Ischemia also increases
phospho-ERK1/2 and diacylglycerol levels but those
were further increased by CHA, which also potentiates
the reduction in cAMP promoted by ischemia (Atef et al.
2018). A more recent study shows that pretreatment with
A, agonist CCPA for 30 min reduces the brain infarction
area after 90 min of MCAO, and this effect correlates to
the increase in glycogen synthase kinase 3 beta (Gsk3b)
phosphorylation (Geng et al. 2020). In another study, Cui
et al. (2016) have shown that a blocker of dynamin-related
protein 1 reduces stroke volume and improves neurologi-
cal score of mice submitted to MCAO, depending on A,
receptor, and involving increase in levels of extracellular
adenosine through regulation of the ecto-5' nucleotidase
(CD39) expression in astrocytes via cAMP/PKA/cAMP-
response element binding protein (CREB) phosphoryla-
tion. The protection afforded by electroacupuncture, which
increases adenosine levels and reduces infarct volume in
a model of MCAO also depends on A, receptor (Dai et al.
2017). Treatment with A, receptor agonists, soon after
ischemia, is also effective in protecting neurons, improv-
ing neurological scores and reducing mortality (von Lubitz
et al. 1988; von Lubitz and Marangos 1990). Accordingly,
acute pre-treatment with A, antagonists CPX or 8-CPT
significantly worsens the outcome and enhances neuronal
destruction induced by global ischemia (Boissard et al.
1992; Von Lubitz et al. 1994a; Phillis 1995; Olsson et al.
2004).

However, while studies using an acute treatment with A
receptor antagonists show aggravation in ischemic damage,
chronic treatment, previous to ischemia, has a protective
effect. Exposure to A; antagonist CPX—1 mg/kg, i.p. for
15 days, up to 24 h before the ischemic event, reduces neu-
ronal damage (Von Lubitz et al. 1994a). Such effect could be
attributed to the fact that prolonged inhibition of a receptor
induces its upregulation, a common neurochemical plasticity
response observed in the CNS that also applies to A recep-
tor (Jacobson et al. 1996; Hettinger-Smith et al. 1996; Brito
et al. 2012). Curiously, adult A; KO mice show no effect
on cell death in hippocampus, cortex, and striatum after a
12-min global ischemia followed by 4 days of reperfusion,
raising the question if compensatory mechanisms could be
active in animals lacking A, receptor, which predominantly
seem to promote the survival of the CNS cells in ischemic
conditions (Olsson et al. 2004).

Thus, A, receptor consists of an interesting target of
studies in the context of ischemic damage. Its essential
effect represented by the reduction of neuronal excitability
has proven to be beneficial in mature and immature brain
lesions. Despite that, it is important to highlight that chronic
treatments with A, antagonists may trigger compensatory
mechanisms as receptor upregulation, which may be relevant
as a protective strategy.

The Modulatory Effect of A,, Receptors in Ischemic
Conditions

Classically, A, and A,, adenosine receptors elicit opposite
intracellular responses. Accordingly, many studies demon-
strate that A, , receptor antagonism, as well as A activation,
is protective against ischemic damage. A,, selective antago-
nist, administered just before ischemia, protects hippocampal
neurons in a global prosencephalic ischemia model (Phillis
1995; Von Lubitz et al. 1995). Similarly, treatment with
an A,, selective antagonist (ZM241385) before ischemia
reduces neuronal damage in hippocampal cells and improves
animal performance in Morris water maze (Higashi et al.
2002). The beneficial effect provided by blockade of A,,
receptors in ischemic events is reinforced by studies showing
that A, , receptor KO protects from cerebral ischemic dam-
age (Chen et al. 1999; Gui et al. 2009). When administered
after the ischemic event (which in fact has greater clinical
relevance), an A,, antagonist also has protective effects.
The use of SCH58261 after the ischemic event reduces neu-
ronal damage in neonate and adult rats (Bona et al. 1997;
Monopoli et al. 1998; Melani et al. 2003, 2006b). In new-
born piglets, the A, , inhibition-induced protection involves
an increase in Na*/K* ATPase pump activity, and prevention
of the ischemia-induced phosphorylation of NMDA recep-
tor subunit GluN1 at ser897 and of dopamine- and cAMP-
regulated neuronal phosphoprotein (DARPP32) at thr34.
The protection also includes the reduction in ischemia-
induced nitrative and oxidative stress (Yang et al. 2013).
Mohamed and collaborators (Mohamed et al. 2016) have
analyzed in more detail the intracellular pathways triggered
by A,, antagonism in ischemia. Intrahippocampal injec-
tions at the end of a 45-min ischemic event decrease pro-
tein levels of phospho-ERK (p-ERK), NFkB, TNF-a, IL-6,
iNOS, caspase-3, Cyt C, p-CREB, and c-fos, all increased by
ischemia/reperfusion (Mohamed et al. 2016). Moreover, the
authors report a decrease in glutamate and TBARS, along-
side increases in IL-10 and nuclear Nrf2 with the antago-
nist treatment. However, exposure to A,, receptor antago-
nist (CSC), 2 h after stroke onset, has no protective effect
in lesion volume, which could be due to the time window
of effectiveness or dose (Fronz et al. 2014). Furthermore,
prolonged use of SCH58261, starting 5 min and twice/day
after tMCAOQO, does not change infarct volume when ana-
lyzed 7 days later, suggesting a time window of apparent
protection that remains to be fully understood (Melani et al.
2015). Finally, A, , receptor KO in younger (P7) rats inten-
sifies the damage, caused by the occlusion of the left com-
mon carotid, and the performance in behavioral tests, such as
rotarod (Adén et al. 2003), which raises the question whether
the effect of A, , receptor blockade depends on the maturity
of the tissue and/or differentiation of specific features during
development to achieve neuroprotection.
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To understand the role of adenosine A,, receptor in
ischemia-induced cell death, experiments with agonists have
also been performed. In the gerbil, A,, agonist (APEC),
administered systemically and chronically for 13 days before
the ischemic insult, has beneficial effects on the survival of
hippocampal neurons and animals (Von Lubitz et al. 1995).
Systemic administration of A,, agonist ATL-146e or CGS
21680, just before reperfusion onset, protects from motor
dysfunction and cell viability in spinal cord ischemia—rep-
erfusion and infarct size, oxidative stress, and memory
impairment in global cerebral ischemia, respectively (Reece
et al. 2006; Grewal et al. 2019). The treatment with low
doses (0.01-0.1 mg/kg i.p.) of this same agonist for seven
days (and twice a day), after transient cerebral ischemia,
decreases gliosis, the infarct area in the cortex, but not in
the striatum, as well as the myelin disorganization in the
striatum (Melani et al. 2014a). The possible explanation for
the apparent contradiction (activation of A,, receptor and
protection) is the modulation of functions in non-neuronal
cells-glial, endothelial, and immune cells that leads to sev-
eral benefic effects (described in the next topic).

The data show an important neuroprotective function trig-
gered by the inhibition/absence of A, , receptors in neurons
in different models of cerebral ischemia. Interestingly, in
some cases, the protective action can also be achieved after
ischemia, which makes A,, receptor inhibition a promis-
ing tool in both prevention and treatment. In addition, the
time frame of pharmacological intervention is crucial for
the protective effect, as well as the period of development.
In any case, the evidence mostly places the inhibition of
A, 4 receptors as a common denominator of neuroprotection.

Protective Mechanisms Through A, and A,
Receptors Related to Glial and Other Cells

The protective effect of A,, receptors inhibition can also
be attributed to the regulation of synaptic transmission and
glutamate release (Cunha et al. 1994; Latini et al. 1999a;
Melani et al. 2003; Pugliese et al. 2009; Lopes et al. 2011;
Maraula et al. 2013; Effendi et al. 2020). This effect seems
to occur through modulation of A, receptor activity, at least
in the hippocampus (Lopes et al. 2002). It is known that
glial cells play an important role in the regulation of gluta-
mate availability and excitotoxicity. Interestingly, in astro-
cytes, A, receptors inhibit glutamate uptake by excitatory
amino acid transporter (EAAT)-2 while stimulating EAAT-
2-independent release via PKA activation (Nishizaki et al.
2002). Acute (30 min) or chronic (24 h) activation of the
A, , receptor with CGS 21680 reduces p-aspartate uptake
in astrocyte cultures, probably by decrease of glutamate
transporters EAAT1 and EAAT2 mRNA expression (Matos
et al. 2012). Cultures of rat astrocytes subjected to OGD for
150 min show great cell death after 24 h of reoxygenation.
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Death is inhibited by guanosine through a mechanism that
depends on the activation of the A, receptor and the MAPK
and protein kinase C (PKC) pathway. Activation of these
pathways prevents the OGD-promoted reduction of EAAT2
glutamate transporters in the membrane, restoring glutamate
uptake and, consequently, restricting cell death (Dal-Cim
et al. 2019). This evidence is in agreement with the increase
in the amount of EAAT?2 by overexpression of A; receptors
in astrocytes (Wu et al. 2011; Hou et al. 2020). Recently,
it has been demonstrated in mouse astrocyte cultures sub-
jected to OGD that the formation of A |—A,, heterodimers
reduces the expression of EAAT? through the transcription
factor YY1 and repression of PPARY transcription. Interest-
ingly, the effect is blocked by the pharmacological activa-
tion or inhibition of the A, and A,, receptor, respectively
(Hou et al. 2020). Thus, A,, receptors activation reduces
the ability of glial cells to decrease glutamate availability,
which could be harmful in ischemic events. In agreement,
there is an increase in the expression of EAAT?2 in astrocytes
genetically devoid of A,, receptors (Matos et al. 2015; Hou
et al. 2020). In addition, A,, receptor inhibition reduces
reactive astrogliosis in slices of hippocampal rats submitted
to OGD (Pugliese et al. 2009). It remains to be evaluated
whether reactive astrogliosis depends on the modulation of
glutamate transporters. New evidence points out that the
astrocytic Lrp4 protein contributes to cell death induced by
photothrombosis, ischemic stroke, and OGD, since Lrp4 KO
animals exhibit lower cell death when compared to controls
(Ye et al. 2018). The authors demonstrated that the absence
of the protein reduces reactive astrogliosis and increases
the release of ATP and astrocytic adenosine in ischemic
conditions, which contributes to the reduction of neuronal
death through activation of the P2X7 and A, , receptors (Ye
et al. 2018). In fact, astrocytes are a considerable source of
adenosine release in ischemic conditions (Martin et al. 2007,
Takahashi et al. 2010).

Ischemia, ATP and glutamate per se can also induce micro-
glial activation (Pforte et al. 2005; Davalos et al. 2005; Melani
et al. 2006a; Lai et al. 2011). Furthermore, A, , receptor, stimu-
lated by adenosine released during ischemia, activates microglia
(Orr et al. 2009). Reactive microglia releases high concentra-
tions of glutamate (Takeuchi et al. 2006; Socodato et al. 2015)
and ATP (Imura et al. 2013), contributing to a positive feed-
back loop of microglial activation and enhancing excitotoxicity.
Accordingly, glutamate release after ischemia can be attenu-
ated by treatment with A,, antagonist (SCH 58261) in vivo
and in rat and human cortex slices (Marcoli et al. 2003, 2004,
Melani et al. 2003). Furthermore, A, , antagonism prevents the
ischemia-promoted increase in p-p38 and TNF-a in microglia
and in p-JNK in oligodendrocytes, which would lead to a dis-
organization of myelin (Melani et al. 2006b, 2009; Mohamed
et al. 2016). Another interesting point is that NGF plays a neu-
roprotective role in cerebral ischemia. Astrocytes, together with
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microglia, are the main responsible for NGF secretion, which is
stimulated by A, and A, receptors, respectively (Heese et al.
1997, Ciccarelli et al. 1999; Liu et al. 2019). The relation of
NGF production/secretion and A, or A, , receptors in ischemic
events is still unclear. The activation of A,, receptor is also
related to the production and release of neurotrophic factors,
such as glial cell-derived neurotrophic factor (GDNF) and brain-
derived neurotrophic factor (BDNF) (Gomes et al. 2006, 2013;
Tebano et al. 2008; Sebastido and Ribeiro 2009; Jeon et al. 2011;
Vaz et al. 2015), which could help maintain/restore function and
neuronal integrity. However, the release of these neurotrophic
factors may not compensate for several other malefic alterations
triggered by A, , receptor activation during ischemia. Activa-
tion of A, , receptor in microglial cells also induces cyclooxyge-
nase 2 (COX-2) content, and prostaglandin E2 release (Fiebich
et al. 1996), nuclear translocation of hypoxia inducible factor
(HIF-1a) and transcription activation of vascular endothelial
growth factor (VEGF) and iNOS (Merighi et al. 2015).

Besides glial cells, other cell types can contribute to pro-
tection induced by A, , inhibition. The specific inactivation
of A,, receptors in endothelial cells have recently shown to
be beneficial in a model of embolic MCAO. The cell-spe-
cific knockout decreases infarct volume and improves neu-
rological outcome (Zhou et al. 2019). Furthermore, the KO
shows reduced protein levels of adhesion molecules, such
as VCAM and ICAM, neutrophil and monocytes infiltra-
tion, reduced blood-brain barrier leakage, and consequently
reduced edema. The mechanism seems to involve less acti-
vation of the NLRP3 inflammasome in the endothelial KO.
Taken together, these data indicate that a plethora of changes
triggered by A,, receptor inhibition during or soon after
ischemia result in CNS protection.

Furthermore, the best window for treatment with A,,
receptor inhibitors, and therefore, the outcome efficiency
after ischemia, can be challenging due to the action in non-
neuronal cells. The activation of A,, receptor in immune
cells could contribute to the protection after ischemia/rep-
erfusion, as it reduces infiltration of those cells into the
ischemic site, and release of inflammation signal, which
aggravates injury (Haské et al. 2008; Antonioli et al. 2014;
Melani et al. 2014a). Studies indicate that adenosine, by
activating A,,, A,g, and A, receptors, restrains the pro-
duction of macrophage pro-inflammatory mediators, such
as TNFa, IL-6, IL-12, NO, and macrophage inflammatory
protein (MIP)-1a (Antonioli et al. 2019). In vitro, human
dermal microvascular endothelial cells (HDMECSs) and rab-
bit DMECs show less apoptotic levels after hypoxia when
treated with A,, agonist (CGS-21680) before the onset of
hypoxia and again before reoxygenation (Cao et al. 2017,
2019). Thus, these results show that A, , receptors may also
account for protection by preserving the vascular integrity
and can hinder the best protocol of treatment with the A,,
inhibitors.

Beneficial Effects of A,z Receptors in Ischemia

The role of A, receptors has been less explored but, inter-
estingly, due to the low affinity for adenosine and the relative
paucity in the brain, A,y receptors appear to be activated, and
may be biologically operative, mainly under noxious situations,
such as hypoxic or ischemic conditions, when adenosine levels
increase (Koeppen et al. 2011; Popoli and Pepponi 2012). In the
stratum radiatum of the CA1, the A,y receptor is found in non-
astrocytic cells, and the number and labelling density increase
after cerebral ischemic preconditioning (Zhou et al. 2004). In
A,z KO mice, basal levels of TNF-a and adhesion molecules,
such as ICAM-1, P-selectin, and E-selectin, are increased (Yang
et al. 2006). In addition, A,y receptors demonstrate an important
function in endothelial cells to control vascular leakage and neu-
trophil infiltration induced by hypoxia in several organs (Eckle
et al. 2008). However, in the brain, although the genetic absence
of A, receptors in bone marrow increases vascular permeabil-
ity, A, receptor agonist or antagonist treatment has no effect
(Eckle et al. 2008). Additionally, hypoxia upregulates A,y recep-
tors, together with HIF-1o and IL-6, in primary microglial cells
(Merighi et al. 2017). Interestingly, the role of A, receptors in
tissue-type plasminogen activator (tPA) treatment, one of the
frontlines to treat stroke in humans, was recently evaluated. An
inconvenient side effect of tissue-type plasminogen activator
is the possibility to induce hemorrhagic transformation. Treat-
ment with an A, agonist (BAY 60-6583) after ischemia reduces
infarct volume in the presence or not of tPA and counteracts the
blood-brain barrier damage induced by tPA (Li et al. 2017).
These data could open the possibility to include A,y agonists as
adjuvants in tPA treatment after stroke.

A, receptors were also studied in the context of protec-
tion mediated by propofol in ischemia. This anesthetic could
reduce microglial proliferation, and the levels of nitric oxide,
TNF-a, and IL-1p, all increased by transient MCAO. An A,g
antagonist (MRS agar) blocks the beneficial effects of propo-
fol, suggesting an interesting protective effect of propofol
in ischemia through A,y activation (Yu et al. 2019). Doco-
sahexaenoic acid protects hippocampal slices from OGD-
promoted cell death through A,y receptors activation (Molz
et al. 2015). In the same model, A,y antagonists (MRS1754
or PSB603) delay OGD-induced anoxic depolarization,
restoring field excitatory postsynaptic potentials (fEPSPs),
decreasing the apoptotic marker cytochrome ¢, and improv-
ing neuronal survival (Fusco et al. 2018).

Therefore, different from A, and A,, receptors, which
are widely distributed in the CNS, A,y receptors may play
a restricted role in adverse conditions, such as ischemia. As
a consequence, A,y antagonists may elicit the protection of
ischemic neurons. Moreover, as A,z modulation may impact
blood circulation, pharmacological strategies based on this
receptor should benefit the scheme of pharmacological inter-
vention in cases of stroke.
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The Action of A; Receptors in Ischemic Events

The A; receptors also appear to be involved in the process of cell
survival and death, depending on the level of receptor activation
and pathophysiological conditions, such as the ischemic pro-
cess (Abbracchio and Cattabeni 1999; Borea et al. 2009). Pre-
treatment with a selective A; agonist (CI-IB-MECA) increases
cell viability of primary cortical cultures exposed to OGD, as
well as attenuates ischemia-induced TUNEL labeling and cer-
ebral infarct volume, and increases locomotor activity (Chen
et al. 2006). Treatment with IB-MECA after ischemia reduces
infarct size, reactive gliosis, and microglia infiltration when
evaluated 7 days later (Von Lubitz et al. 2001). The reduction
of microglial infiltration by IB-MECA after ischemic events may
depend on direct inhibition of chemotaxis and down-regulation
of Rho GTPases (Choi et al. 2011). In agreement, KO for the A4
receptor exhibits greater ischemic (Chen et al. 2006) or hypoxic
damage (Fedorova et al. 2003). In vitro studies with hippocam-
pal slices, prepared from young rats (P12-P16), submitted to
15-min OGD, result in depression of fEPSPs that was persistent
only at CA3 region, but not at CA1, and application of A, recep-
tor antagonist (VUF5574 or MRS1191) prevented the persistent
depression (Dennis et al. 2011). The authors suggest that A acti-
vation can partially contribute to OGD-induced AMPA recep-
tors internalization in the CA3 region, potentially protecting it
from following excitotoxicity. In hippocampus slices from adult
rats, A, antagonists prevent sustained depression induced by
OGD at CA1 region (Pugliese et al. 2007). Moreover, in a model
of global ischemia of the anterior brain in the gerbil, chronic
administration of IB-MECA (100 pg/kg i.p. daily for 10 days
before ischemia), reduces neuron loss in the hippocampus (Von
Lubitz et al. 1994b). In human astrocytoma cells, low concen-
tration of CI-IB-MECA reduces hypoxia-induced apoptosis, as
well as cell death is exacerbated in A; KO astrocytes (Bjorklund
et al. 2008).

Although, high concentrations of adenosine or 2-CI-IB-
MECA seem to be toxic to oligodendrocyte cultures pre-
pared from optic nerve, by causing ROS production, mito-
chondrial membrane depolarization and caspase dependent
cell death, which are blocked by MRS 1220, an A, receptor
antagonist (Gonzalez-Fernandez et al. 2014). Furthermore,
MRS 1220 reduces OGD-induced cell death in isolated optic
nerve, also restoring myelin basic protein levels.

The evidence strengthens the idea that A receptor activation
triggers a protective mechanism in ischemic events, similar to A
receptor stimulation. The neuroprotective effect seems to depend
directly on the activation of the receptor in neuronal cells; how-
ever, an indirect effect via other cell types cannot be ruled out.

Role of Adenosine Receptors in Ischemic Retina

In the mature retina, A,, receptor inhibition or A, receptor
activation has also beneficial effects in ischemic conditions.
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The increased availability of adenosine, using an adenosine
deaminase blocker, or an A, receptor agonist, both applied
just before ischemia, preserves the tissue integrity, and the
electrical activity impaired by ischemia (Larsen and Osborne
1996). Interestingly, A, receptors blockade also impairs the
histological protective effect provided retinal ischemic pre-
conditioning (Sakamoto et al., 2004). In addition, the A,,
inhibition protects both structure and tissue functionality
after ischemic events of 5, 30, or 60 min, whereas A, block-
ade does not exert the same effect (Li et al. 1999). In a model
of ischemia induced by increased IOP and reperfusion for
7 days, the A, , antagonist KW6002 also reduces the inflam-
matory response and the apoptotic levels in the rat retina
(Boia et al. 2017). In the same model, an A,, antagonist
(SCH 58261) reduces microglial reactivity, IL-1p levels, and
TUNEL staining (Madeira et al. 2016a). Intriguingly, selec-
tive A,, activation before ischemia alleviates the thinning
of the inner retina (Konno et al. 2006).

In both in vitro and in vivo models of the retina, A, recep-
tor selective agonist provides protection against excitotoxic
stimuli and ischemia—reperfusion injury, increasing the sur-
vival of retinal cells, including ganglion cells (Galvao et al.
2015). This protective effect could occur through receptor
desensitization (Pugliese et al. 2007).

Caffeine as a Possible Neuroprotector
in Ischemia

Caffeine and Coffee Consumption

Caffeine (1,3,7-trimethylxanthine) is an alkaloid that
belongs to the class of xanthines, being the most consumed
psychostimulant in the world. The worldwide consumption
of caffeine occurs through different sources, such as coffee,
teas, chocolates, soft drinks, energy drinks, and medicines
(Heckman et al. 2010; Yoon and Danesh-Meyer 2019). How-
ever, the main source of this stimulant in Western society
is through the consumption of coffee, where its concentra-
tion can vary between 40 to 180 mg/150 mL. In Western
countries, the daily intake of caffeine reaches 70-80% of
the population (Heckman et al. 2010; Mitchell et al. 2014),
increases with age, and the consumption, considering all
sources, can vary from 135 to 213 mg/day (Drewnowski and
Rehm 2016). Brazil is the second largest consumer of coffee
in the world, and the consumption of caffeine by adults, from
all sources, can reach 300 mg/day (Heckman et al. 2010;
Sousa and Da Costa 2015).

Molecular Mechanisms and Caffeine Metabolism

The biological effects triggered by caffeine concentration
reached by average daily consumption are related to its
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antagonism of adenosine receptors, more specifically A,
and A,, receptors (Rivera-Oliver and Diaz-Rios 2014).
Besides adenosine, other molecular targets can be modu-
lated by caffeine only at high/toxic concentrations, which
are unlikely to be reached in humans by any form of normal
use of caffeine-containing beverages. Comparing to the con-
centration range that selectively inhibits adenosine recep-
tors, caffeine can inhibit phosphodiesterase (in a ten times
higher concentration), GABA , receptors (40 times higher),
and mobilize calcium from intracellular stores (100 times
higher) probably by its action on ryanodine receptors (Fred-
holm 1979; Fredholm et al. 1999; Gupta et al. 2018). Thus,
the vast majority of the effects described in animal models
and human studies using caffeine are exclusively related to
inhibition of adenosine receptors (see Box 1 for information

about caffeine dose translation).

Box 1: How to Translate Caffeine Dose
from Animal Models to Humans

Several studies have been researching the role of caffeine
in different pathologies using animal models. Concerning
that, it is important to bear in mind that caffeine dose can-
not be directly compared between animals and humans
because of the difference in the body surface area (BSA).
Reagan-Shaw et al. (2007) call the attention to the usage
of appropriate normalizations to extrapolate animal dose
to humans. The Food and Drug Administration (FDA)
recommends the usage of a factor (Km) to convert animal
dose to human equivalent dose (HED) using the follow-
ing formula:

Human equivalent dose (mg/kg)

= animal dose(mg/kg)multiplied by animal Km
human Km.

For example, the treatment of a mouse with 30 mg/
kg of caffeine corresponds to a HED of 2.43 mg/kg,
since the values of Km for adult human (with 60 kg)
and mouse (Table 1) are, respectively, 37 and 3 (Rea-
gan-Shaw et al. 2007). Therefore, for an adult with
60 kg it corresponds to 146 mg of caffeine, which is a
low dose for humans. However, the Km for rats is 6, so
a 30 mg/kg treatment corresponds to a HED of 4.86 or
292 mg of caffeine, a higher HED. The HED obtained
in the rat, but not in the mouse example is in the range
considered, by The American College of Obstetricians
and Gynecologists, unsafe for pregnant women. There-
fore, researchers must be careful about which dose they
should choose depending on the consumption range
they may plan to stimulate in humans.

After ingestion, caffeine is rapidly and completely
(99%) absorbed by the gastrointestinal tract in humans,
reaching a plasma peak between 15 and 120 min. For
doses of 5-8 mg/kg, the plasma caffeine concentration
can vary between 8 and 10 mg/L (Arnaud 1993). Due
to its hydrophobic profile, caffeine is able to cross all
biological barriers, such as hemato-intestinal, hemato-
placental, blood-brain barrier, and blood—retinal barrier
(Arnaud 1993; Cappelletti et al. 2015). The half-life
of caffeine in humans varies between 2.5 and 4.5 h for
doses less than 10 mg/kg (Fredholm et al. 1999). Caf-
feine metabolism occurs in the liver and is carried out
mainly by the cytochrome P450 1A2 enzyme system
(CYP1A2), even though xanthine oxidase and acetyl-
transferase 2 (NAT-2) also contribute to this function
(Nehlig 2018). However, the functionality of CYP1A2
is reduced in different animals, neonates and premature
babies, which dramatically increases the half-life of caf-
feine in these individuals (Arnaud 1993; Fredholm et al.
1999; Nehlig 2018). Thus, metabolic rate is another
important factor that influences caffeine effect in animal
models. For doses lower than 10 mg/kg, the half-life
of caffeine ranges from 0.7 to 1.2 h in rats and mice,
1-4 h in rabbits, 3—5 h in monkeys (Bonati et al. 1984;
Arnaud 1993; Xu et al. 2010).

The metabolism of caffeine that occurs in the liver
produces, among other components, three dimethyl-
xanthines: paraxanthine, theobromine, and theophyl-
line. Among the three, paraxanthine is produced in a
greater proportion (84%), followed by theobromine
(12%) and theophylline (4%) (Cappelletti et al. 2015).
These metabolites have physiological actions (Ribeiro
and Sebastido 2010). Interestingly, it has been observed
that after chronic caffeine consumption, the concentra-
tion of theophylline in the brain of mice seems to remain
higher than their own peripheral concentrations, higher
than the concentrations of other metabolites and higher
than the concentration of caffeine itself. These findings
suggest that caffeine metabolism in the CNS may be dif-
ferent (Johansson et al. 1996), which could impact the
outcome of treatment with caffeine. Therefore, more stud-
ies aiming to understand the role of these metabolites in
ischemic events could help reach an efficient protocol of
therapy.

Implications of Caffeine Exposure During
Development

Caffeine and its metabolites can accumulate during preg-
nancy since clearance and excretion are reduced due to
decreased CYP1A2 activity (Stavric 1988; Nehlig 2018).
The ability of caffeine to freely cross the placental barrier,
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coupled to the fact that its metabolism is immature dur-
ing embryonic and postnatal development, can lead to
a high concentration of this compound in the body of
these fetuses/neonates and compromise the correct devel-
opment of different systems. In fact, there are a number
of studies that relate the administration of high doses of
caffeine during embryonic development in animal models
with teratogenic effects (Tye et al. 1993; Sahir et al. 2000;
Momoi et al. 2008; Li et al. 2012; Ma et al. 2012, 2014,
Tan et al. 2012; Xu et al. 2012). In humans, epidemio-
logical surveys have shown an increased risk of low birth
weight (Momoi et al. 2008; Sengpiel et al. 2013), fetal
growth restriction (Klebanoff et al. 2002; Bracken et al.
2003; Bakker et al. 2010) and miscarriage as caffeine
intake increases. In some cases even the consumption of
one cup of coffee (100 mg caffeine) per day increases the
risk (Konje and Cade 2008; Weng et al. 2008; Bakker
et al. 2010; Chen et al. 2014; Li et al. 2015; Rhee et al.
2015). However, The American College of Obstetricians
and Gynecologists states that less than 200 mg per day of
caffeine consumption does not appear to be a major con-
tributing factor in miscarriage or preterm birth, whereas
for fetal growth restriction it is undetermined (Counseling
2019). In addition, caffeine is used in the treatment of
apnea of prematurity, which decreases the risks of patent
ductus arteriosus, brain injury, retinopathy of prematu-
rity (ROP), and postnatal steroid use (Abdel-Hady 2015;
Kua and Lee 2017; Kumar and Lipshultz 2019). Never-
theless, the best therapeutic window, dose, and duration
of therapy remain to be determined (Abdel-Hady 2015;
Kumar and Lipshultz 2019).

Apnea of Prematurity and Caffeine
Clinical Aspects of the Apnea of Prematurity

An apneic episode is characterized by respiratory failure
that lasts more than fifteen seconds and it is accompanied
by hypoxia, bradycardia, cyanosis, or pallor. It is one of
the most common diagnoses in the NICU and requests
the attention of the medical community. Its occurrence
is inversely proportional to gestational age, and it can
be classified as central, obstructive, or mixed (Martin
and Wilson 2012; Eichenwald 2016). The understand-
ing of the pathogenesis of the apnea of prematurity has
revealed central (e.g., decreased central chemosensitivity,
hypoxic ventilatory depression) and peripheral (e.g., dys-
regulation of carotid body activity, excessive bradycardic
response) mechanisms involved in these events and it has
guided the search for therapeutic interventions not only
to increase survival but also to avoid long-term conse-
quences that may include neurodevelopmental disorders
(Martin and Wilson 2012). Usually, these children request
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air supply to survive, and exposure to higher oxygen ten-
sion can lead to ROP. In premature children, the exposure
to high oxygen tension, compared to in uterus conditions,
inhibits retinal normal vessel growth, creating avascular/
ischemic zones (Schmidt et al. 2007; Liegl et al. 2016;
Hartnett 2017). As the newborn develops, tissue meta-
bolic demand increases, triggering signaling pathways to
promote neovascularization, and consequently, formation
of disorganized and nonfunctional vessels. ROP is a lead-
ing cause of infant blindness worldwide (Gilbert 2008;
Blencowe et al. 2013; Quimson 2015; Bashinsky 2017),
and the treatment for the disease includes photocoagula-
tion and use of VEGF inhibitors (Liegl et al. 2016).

Therapeutic Agents and Caffeine Function

The procedures to treat apnea include options, such as
nasal continuous positive airway pressure (NCPAP),
which reduces frequency and severity of apnea by
decreasing the risk of obstructive apnea; blood transfu-
sion in the attempt to reduce apnea by increasing respira-
tory drive, oxygen carrying capacity, and tissue oxygena-
tion, a short-lived method linked to anemia occurrence;
and the xanthine therapy, which is the standard method,
normally by using caffeine citrate due to its longer half-
life (Eichenwald 2016).

Xanthines exhibit respiratory effects as they improve
ventilation and increase carbon dioxide sensitivity by
blockade of adenosine receptors. Although caffeine had
been used for thirty years, the first study evaluating the
long-term efficacy and safety of caffeine therapy for
apnea of prematurity was developed by Schmidt and col-
leagues and published in 2007 (Schmidt et al. 2007). Pre-
viously, this group has demonstrated that caffeine reduces
the incidence of bronchopulmonary dysplasia (Schmidt
et al. 2006). Then, Schmidt and co-authors (2007) have
observed that, at eighteen to twenty-one months old, caf-
feine significantly enhances the rate of survival without
developing neurological problems (Schmidt et al. 2007).
They show a reduction in the severity of eye disease,
cerebral palsy, and cognitive delay, as well as a better
psychomotor development in the caffeine-treated group.
The authors discuss that these results could be achieved
because treatment with caffeine reduces important vari-
ables: time with respiratory support, the need of postna-
tal corticosteroids, the surgery to close a patent ductus
arteriosus, and the rate of bronchopulmonary dyspla-
sia. However, the strongest intermediate variable is the
reduced time for any positive airway pressure, because
it can compromise the lungs, which in turn can evolve
into a bronchopulmonary dysplasia, a risk factor for
the development of neurological issues (Schmidt et al.
2007). Therefore, caffeine levels higher than 7.9 mg/kg
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body weight per day have been reported as being safe and
effective in apnea of prematurity treatment in neonates
born before 28 weeks of gestation (Francart et al. 2013).

Caffeine and Retinopathy of Prematurity

Caffeine treatment for infants with apnea of prematu-
rity also reduces severity of ROP. As an ischemic retin-
opathy, adenosine is also released as a consequence of
ischemia, and the role of the nucleoside has been inves-
tigated in animal models of ROP, described as oxygen-
induced retinopathy (OIR). Genetic inactivation of A,,
or treatment with an antagonist of the receptor, KW6002,
reduces vaso-obliteration induced by OIR and inhibits
irregular retinal angiogenesis both in young and adult
animals (Liu Xiao-Ling et al. 2010; Zhou et al. 2018).
KO of A, receptor also has positive effects on vaso-oblit-
eration in a OIR model, reducing normal vessel growth,
even though it does not reduce neovascularization into
the vitreous (Zhang et al. 2015). Zhang et al. (2017)
have also evaluated the effect of caffeine (1 g/L) through
nursing mothers, in OIR model (from P7-P12), during
different time windows: PO-7 (pre-treatment), PO—17
(continuous treatment), P7—12 (hyperoxic phase), and
P12-17 (hypoxic phase). Caffeine exposure reduces vaso-
obliteration and creation of avascular zones when treat-
ment occurs during the entire period, or even restricted
to hyperoxic phase. Furthermore, neovascularization
is reduced by treating during any time window except
for pre-treatment. Importantly, caffeine treatment does
not interfere in normal postnatal vascular development
(Zhang et al. 2017). Further analyzes show that the effect
of caffeine (the decrease of avascular zones) at P12 is
totally dependent on A,,, while the effect on avascular
zones and neovascularization at P17 is only partially cor-
related to the receptor. In accordance, caffeine (10 mg/
kg i.p.), as a single application 15 min before protocol of
hyperoxia (80% oxygen) for 24 or 48 h, reduces oxidative
stress markers, like lipid peroxidation, heme oxygenase-1
(HO-1), and H,O, formation, and reduces gene expres-
sion of Nrf2, glutamate-cysteine ligase and increases
gene expression of SOD3 in brain homogenates (Endes-
felder et al. 2017). Additionally, the authors observe
reduction of inflammatory markers such as iNOS, IL-1,
TNF-1a, and interferon gamma, a reduction of apoptotic
mediators, like nuclear poly (ADP ribose) polymerase 1
(PARP-1), apoptosis inducing factor (AIF) and caspase-3,
and a reduction of the matrix metalloproteinase 2 activity,
which could contribute to neurotoxicity and inflamma-
tion. Caffeine citrate (20 mg/kg i.p. at PO and mainte-
nance doses of 5 mg/kg/day from P1-13) and ketorolac
(COX inhibitor; topical ocular administration once a day
from P5-7) reduce severe OIR performed from P0-14

and analyzed at P14, or 7 days later (enabling recovery)
(Aranda et al. 2016). Therefore, the data obtained by ani-
mal model studies corroborate the idea of caffeine as a
good therapeutic tool to reduce retinal damage in ROP.
Most recently, it was shown that treatment with caffeine
(30 mg/kg, single in ovo injection, 48 h before ischemia)
protects chick embryo retinal cells in an ex vivo model of
acute ischemia (OGD). The protective effect is dependent
on CREB phosphorylation and BDNF signaling. Such
effect could be mimicked by DPCPX, an antagonist of
adenosine A, receptors, indicating the presumably mech-
anism of action for caffeine (Pereira-Figueiredo et al.
2020). It is important to note that other pharmacologi-
cal interventions have also been investigated as potential
treatment for ROP, such as Omega-3 fatty acid, insulin-
like growth factor 1 inducers, vitamin A, cyclooxygenase
inhibitors, inositol, and propranolol (Beharry et al. 2016;
Aranda et al. 2019).

Caffeine in the Immature Ischemic Brain
Caffeine Dose and Neuroprotection

Studies in animal models have also been positively cor-
relating low—moderate doses of caffeine treatment with
cell survival in the immature brain, exposed to ischemic
events in different developmental windows. A protective
effect for caffeine is achieved in a close time window, at
least less than 6 h, after ischemia. Interestingly, even a
single injection of caffeine (5 mg/kg i.p.), directly after
HI, also reduces infarct zone and cerebral atrophy in rats
submitted to ischemia at P10 and analyzed at P24 (Win-
erdal et al. 2017). Cognitive function also seems to be
affected by a single dose of caffeine (10 mg/kg i.p.) after
induction of ischemia at P7, and evaluated months later,
as a better performance was observed in Morris water
maze at P90-95 rats (Alexander et al. 2013). Treatment
of P7 rats with caffeine citrate (20 mg/kg/day i.p) just
before ischemia, and during the following 3 days, reduces
TUNEL staining in hippocampus and parietal cortex ana-
lyzed at P11 (Kilicdag et al. 2014). Using a similar pro-
tocol of treatment, caffeine citrate (20 mg/kg i.p.), given
just after ischemia and 24 h later, also restores standard
behavior, besides cortical and hippocampal volume, in
adult rats submitted to ischemia at P6 (Potter et al. 2018).
Recently, Di Martino and colleagues have shown that a
single dose of caffeine (5 mg/kg i.p.) right after HI in
rats at P10 reduces global damage score, apoptotic cell
number, microglial activation, and inflammatory gene
expression. The protection did not occur if caffeine was
administered at 6, 12, or 24 h after HI (Di Martino et al.
2020). Therefore, the available data from animal mod-
els indicate a protective role for low—moderate doses of
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caffeine when administered in a close time window, at
least less than 6 h after ischemia.

Beneficial outcomes with caffeine treatment in the
drinking water of dams are also observed. Low dose
of caffeine (0.3 g/L in the drinking water of the dams),
from PO to P21, reduces brain damage induced by HI
performed at P7, and evaluated by brain weight at P21
(Bona et al. 1995). On the other hand, a high dose of caf-
feine (0.8 g/L) has no protective effect (Bona et al. 1995).

White Matter Brain Injury

Few studies explore the caffeine protective effects in the
white matter of the ischemic immature brain. Caffeine
exposure (0.3 g/L in drinking water through the dam)
as soon as P2-P12 reduces periventricular white mat-
ter injury (PWMI) induced by chronic hypoxia (P3—P12)
(Back et al. 2006). PWMI is known to affect very low
birth weight infants, and it is the leading cause of neuro-
logical disability in survivors of prematurity (Volpe 2003;
Ferriero 2004). Accordingly, treatment of P7 rats with
caffeine citrate (20 mg/kg/day i.p) just before ischemia,
and during the following 3 days, decreases white matter
damage in subcortical regions (Fa-Lin et al. 2015).

Effect of Caffeine in the Adult Brain and Retina
in Ischemic Conditions

Brain Ischemia and Role of Caffeine

The preventive/therapeutic potential of caffeine for
ischemia has also been investigated in CNS of adult ani-
mals. It has been reported a correlation between coffee
consumption and lower risks of stroke (Lopez-Garcia
et al. 2009; Larsson et al. 2011; Kim et al. 2012; Liebes-
kind et al. 2016). The correlation is not direct to caffeine,
and the potential of other coffee compounds cannot be
ruled out (Cossenza 2018). Even though, evidence using
adult animal models corroborates the idea that the main
chemical agent involved in this protection is caffeine.
Exposure to caffeine in water (0.2%) for 4 weeks before
a 5-min bilateral occlusion in adult gerbils, evaluating
7 days after ischemia, reduces loss of pyramidal cells
in the CA1 region of the hippocampus (Rudolphi et al.
1989). Resonance images and histopathological analy-
sis of adult rodents reveal differences between chronic
(three times a day by gavage, 20 mg/kg per dose for the
first week, and 30 mg/kg per dose in the third week, last
dose at 24 h before ischemia) and acute (10 mg/kg i.v.
30 min before ischemia) effects of caffeine on ischemic
neuronal injury of rats subjected to forebrain ischemia.
While chronic treatment reduces neuronal injury, acute
treatment has no effect (Sutherland et al. 1991).
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Caffeine Effect in Ischemic Retinopathies

Interesting data concerning ischemia in the mature
retina are also reported. Recently, the effect of caffeine
(100 uM) was evaluated in an in vitro model of diabetic
macular edema, the major cause of vision loss in dia-
betic retinopathy. The xanthine reduces permeability,
induced by hyperglycemia/hypoxia, in monolayer cul-
ture of human retinal pigment epithelial cells (ARPE-
19) by restoring tight junctions and reducing apoptotic
rates (Maugeri et al. 2017). Treatment with caffeine in
drinking water (1 g/L) for 2 weeks, before the ischemia
induction until the end of the experiment, reduces apop-
totic levels and pro-inflammatory cytokines when ana-
lyzed 7 days after the transient IOP raise, even though
exacerbates 48 h after IOP (Boia et al. 2017). Using pho-
tocoagulation of trabecular meshwork of limbal veins to
produce ocular hypertension (OTH), to mimic glaucoma
symptoms, the same group, using the same treatment pro-
tocol, shows that caffeine could diminish inflammation
and ganglion cell loss 7 days, but not 3 days, after OTH
(Madeira et al. 2016b). In humans, a 20-year follow-up
involving 121.172 people found no association between
caffeinated coffee consumption and the risk of develop-
ing primary open-angle glaucoma (POAG). However,
for those with family history of glaucoma and high IOP,
the association seems to exist, as coffee drinkers show
higher chances of developing the pathology (Kang et al.
2008). But, the risk may not be due to caffeine’s effects
on IOP, since ocular application of the compound does
not contribute to elevate IOP in a small five patients study
with POAG/OTH (Chandra et al. 2011). However, it does
show an acute IOP-elevating effect in a study with seven-
teen healthy patients (Redondo et al. 2020). It seems that
this acute effect is dependent on the level of routine con-
sumption, being more expressive in low caffeine consum-
ers as demonstrated in a study involving forty patients
(Vera et al. 2019). The positive association of caffeinated
coffee consumption and risk of exfoliation glaucoma or
exfoliation glaucoma suspect, compared to abstainers, is
also reported in another follow-up involving more than
120.000 people for more than twenty years (Pasquale
et al. 2012), as for higher IOP in coffee consumers with
open-angle glaucoma in a smaller study involving 3654
patients (Chandrasekaran et al. 2005).

Concluding Remarks

Ischemia provokes cell death in developing and mature
CNS, promoting neurological disabilities and ophthal-
mological deficits. The neural damage occurs as a conse-
quence of energy deficit and ionic imbalance, which leads
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to excitotoxicity, oxidative stress, and inflammation. Several
studies have been investigating the protective potential of
adenosine receptors since the concentration of adenosine
increases soon after the ischemic event. Taken together, the
data from adult CNS indicate that adenosine release during
ischemia is protective mainly via activation of A, recep-
tors. Even the upregulation of A, receptors, previous to
an ischemic event, reduces the tissue damage, possibly by
increasing the availability of receptors to be activated by
released adenosine during ischemia (Rudolphi et al. 1989;
Von Lubitz et al. 1994a). The main protective mechanism
mediated by A, receptor seems to be the inhibition of neu-
rotransmitter release, especially glutamate, attenuating the
ischemia-induced excitotoxicity. A few studies focus on
the signaling pathways involved in the beneficial role of A,
receptors. The stimulation of A, receptors reduces oxidative
stress, TNFa production, and increases phosphorylation of
ERK and GSK3p (Fig. 4).

Ischemia
Blood flow |,
0,
Nutrient supply,

There is a substantial amount of data indicating that A, ,
receptor inhibition is also protective in ischemic CNS. The
absence of A,, (KO) in adults renders a greater resistance
against ischemia-provoked cell death (Chen et al. 1999; Gui
et al. 2009). The main protective mechanism provided by the
inhibition of A,, receptors seems to be the modulation of
synaptic transmission. In addition, it has been described that
the blockade of A, , receptors also promotes the modulation
of glutamate availability by astrocytes, the control of inflam-
matory signals in microglia, as well as the maintenance of
myelin organization, empowering the protective outcome
(Fig. 4). The protection could also involve endothelial cells
since the absence of A,, receptors in these cells renders
several protective changes in the context of ischemia (Zhou
et al. 2019). A few studies have focused on the signaling
pathways that support this beneficial role. Moreover, the
inhibition of A, receptors diminishes p-ERK, NFxB, TNF-
a, IL-6, iNOS, caspase-3, Cyt C, p-JNK, p-p38, p-CREB,
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Fig.4 Effects of adenosine receptor modulation in ischemic events.
a The increase of extracellular adenosine availability during ischemia
allows the activation of all adenosine receptors in different cell
types. In astrocytes, stimulation (positive symbol, +) of A, receptors
(green), or inhibition (—| ) of A,, receptors (red), reduces EAAT1/2
exacerbating the augment in extracellular glutamate and contributing
to excitotoxicity. Astrocytes and microglia experience an increase in
CD39 and CD73 content in ischemic events. In the case of A; recep-
tors, the regulation of EAATSs occurs through MAPK/PKC pathway.
The activation of microglial A,, receptors induces intracellular path-
ways related to an inflammatory response. Furthermore, in endothe-
lial cells, A, (purple) and A; (yellow) receptors stimulation, or A,,
receptor inhibition, reduces VCAM/ICAM content, immune cells

infiltration, BBB breakdown, and edema. The inhibition of A,,
receptors in oligodendrocyte and microglia cells reduces, respec-
tively, p-JNK and p-p38 as well as TNF-a. Canonical pathway is rep-
resented in postsynaptic neuron. The right panel depicts the pre- and
postsynaptic terminals and the effect of adenosine receptors agonists
or antagonists during ischemia. b The activation of presynaptic A,
receptors decreases glutamate release through a direct mechanism
or through the inhibition of voltage-gated Ca®* channels (VGCC).
Antagonists of A,, presynaptic receptors also inhibit glutamate
release. In the postsynaptic neurons, A; agonism or A,, antagonism
triggers multiple intracellular pathways promoting antioxidant and
anti-inflammatory responses, decreasing oxidative stress and cell
death
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c-fos, and ROS, all increased by ischemia/reperfusion
(Fig. 4). Finally, it seems that the effect can also depend
on the CNS area since activation of A,, can reduce dam-
age induced by ischemia specifically in the spinal cord and
cortex (Reece et al. 2006; Melani et al. 2014a).

Although there are fewer data concerning A,z and A,
receptors effect, the stimulation of these scarce receptors
has been associated with a protective outcome acting on
different types of cells, endothelial, microglia, and neurons
(Fig. 4). Nonetheless, in vivo intervention with A; receptor
agonists could be challenging due to a hypotensive response.

It is relevant to highlight that most of the studies using selec-
tive pharmacological tools to modulate adenosine system in
ischemia were performed in adult animals. A few available data
from adenosine role in the immature context points to a differ-
ent protective mechanism from adults. For instance, the absence
of A, receptors (KO) can prevent hypoxia-induced ventricu-
lomegaly, a distinctive trace of periventricular leukomalacia,
commonly associated with brain damage in premature infants
(Turner et al. 2003); treatment with adenosine A, agonist,
after HI, does not feature neuroprotective results (Adén et al.
2001); and A, , KO aggravates neuronal damage in immature
brain after HI (Adén et al. 2003). What is the source for this
different response? The signaling underlying cell survival, in
developing or mature neurons, can differ in crucial aspects, espe-
cially involving calcium transients and NMDA receptor activ-
ity (Cunha 2005). These differences probably account for the
existence of some conflicting data about the role of adenosine
receptors in brain ischemia. In addition, some studies show that
the coupling to G protein/intracellular pathways of A,, recep-
tors may change during development. Socodato and colleagues
have shown that A,, receptor activation leads to cell death
through coupling to PLC-protein kinase C in a narrow win-
dow of an early period of retinal development (Socodato et al.
2011). Although A, receptor expression/content is upregulated
by A,, receptor (Pereira et al. 2010; Brito et al. 2012), which
could explain the findings, the study discards this possibility by
showing that A, receptor blockade has no effect. Therefore, the
mechanisms involved in the different resistance to ischemia from
immature to mature brain still represents a field to be explored.

Considering that the main molecular targets of caffeine, at
least in a non-toxic dose, are A, and A, , receptors, together
with the great amount of data correlating the adenosine system
with neuroprotection, many studies have been investigating
the potential of caffeine to alleviate ischemic damage. Since
caffeine has been used in the apnea of prematurity for more
than thirty years, due to its bronchodilator effect, the majority
of studies have explored the outcome in the immature CNS. A
considerable number of studies show that low—moderate doses
of caffeine attenuate the ischemia-induced injury in immature
CNS, indicating that the inhibition of A,, receptor could be
more efficient to save CNS cells than stimulation of A /A,z/
A, receptors by released adenosine or selective agonists. It is
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not well established the reason why the blockade of A,, pre-
vails when compared to activation of A receptor by adenosine
released during ischemia. It probably involves different neuro-
chemical aspects, such as adenosine/caffeine metabolization,
strict control of extracellular adenosine availability, control of
A, by A, , receptor in heterodimers, and upregulation/down-
regulation after treatment, among others. Besides that, due
to the activity of A,, receptors in different cell types during
ischemia, caffeine could target not only neurons but almost
every other CNS cell type (endothelial, microglial, astrocytes,
and oligodendrocytes), perhaps resulting in a stronger prosur-
vival outcome (Fig. 4). Despite all that, the therapeutic time
window of caffeine administration seems to be narrow and
close to the ischemic event. Accordingly, a single exposure to
caffeine soon after ischemia reduces infarct area and amelio-
rates cognitive function evaluated later in the adult.

The data from mature retina studies indicate that pretreat-
ment with A agonist or post-treatment with A, , antagonists
reduces the damage provoked by ischemia. Using animal
models of glaucoma, caffeine exposure, before ischemia and
for additional two weeks, decreases ischemic injury. How-
ever, caffeine treatment in a later period can worsen ischemic
deterioration. The analysis of the possible correlation of
human consumption and glaucoma in studies that include a
higher number of subjects, evaluating longer periods, show
positive correlation of coffee drinkers with the (a) chance to
develop the pathology in those with family history of glau-
coma and high intraocular pressure; (b) higher intraocular
pressure in open-angle glaucoma patients; and (c) risk of
exfoliation glaucoma, even though no association of coffee
consumption with the risk of developing POAG was found.

Finally, in the mature brain, there are only two studies
with animal models demonstrating that chronic, but not
acute, caffeine treatment reduces the damage promoted
by ischemia (Rudolphi et al. 1989; Sutherland et al. 1991).
More intriguingly, one of these studies suggests that the
effect depends on the upregulation of A, receptor, even
though it was not tested (Rudolphi et al. 1989). Thus,
despite the great number of studies in immature CNS, it
is still unclear whether caffeine protects the mature brain
from ischemia and the gap of information is even wider
concerning the signaling pathways involved. Even in the
immature CNS, the cellular mechanisms involved in the
protective role of caffeine have not been largely explored.
Although different experimental paradigms strengthen
the neuroprotective role of caffeine in the context of CNS
ischemia, further studies are still required to successfully
translate the current knowledge to human therapies.
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